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The ideal of p-compact operators: a tensor product approach

by

Daniel Galicer, Silvia Lassalle and Pablo Turco (Buenos Aires)

Abstract. We study the space of p-compact operators, Kp, using the theory of ten-
sor norms and operator ideals. We prove that Kp is associated to /dp, the left injective
associate of the Chevet–Saphar tensor norm dp (which is equal to g′p′). This allows us
to relate the theory of p-summing operators to that of p-compact operators. Using the
results known for the former class and appropriate hypotheses on E and F we prove that
Kp(E;F ) is equal to Kq(E;F ) for a wide range of values of p and q, and show that our
results are sharp. We also exhibit several structural properties of Kp. For instance, we
show that Kp is regular, surjective, and totally accessible, and we characterize its max-
imal hull Kmax

p as the dual ideal of p-summing operators, Πdual
p . Furthermore, we prove

that Kp coincides isometrically with QN dual
p , the dual to the ideal of the quasi p-nuclear

operators.

Introduction. In 1956, Grothendieck published his famous Résumé [9]
in which he set out the basic theory of tensor products of Banach spaces. In
the years following, the parallel theory of operator ideals was initiated by
Pietsch [12]. Researchers in the field have generally preferred the language
of operator ideals to the more abstruse language of tensor products, and
so the former theory has received more attention in the succeeding decades.
However, the monograph of Defant and Floret [3], in which the two fields are
described in tandem, has initiated a period in which authors use indistinctly
both languages.

In the recent years, Sinha and Karn [16] introduced the notion of (rel-
atively) p-compact sets. The definition is inspired by Grothendieck’s result
which characterizes relatively compact sets as those contained in the con-
vex hull of a norm null sequence of vectors of the space. In a similar form,
p-compact sets are determined by norm p-summable sequences. Related to
this concept, the ideal Kp of p-compact operators and different approxi-
mation properties naturally appear (see definitions below). Since relatively
p-compact sets are, in particular, relatively compact, p-compact operators
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are compact. These concepts were first studied in [16] and thereafter in sev-
eral other articles: see for instance [1, 2, 4, 5, 6, 17]. However, we believe that
the benefits the space of p-compact operators inherits from the general the-
ory of operator ideals and tensor products have not yet been fully exploited.

The main purpose of this article is to show that the principal properties
of the class of p-compact operators can be easily obtained if we study this
operator ideal within the theory of tensor products and tensor norms. This
insight allows us to give new results, to recover many already known facts,
and also to improve some of them.

The paper is organized as follows. In Section 1 we fix some notation
and list the classical operator ideals, with their associated tensor norms,
which we use thereafter. Section 2 is devoted to general results on p-compact
sets and p-compact operators. We define a measure mp to study the size of
a p-compact set K in a Banach space E and show that this measure is
independent of whether K is considered as a subset of E or as a subset
of E′′, the bidual of E. This allows us to show that Kp is regular (see
definition below). In addition, we prove that Kp coincides isometrically with
QN dual

p , the dual of the ideal of quasi p-nuclear operators. Finally, we give
a factorization for p-compact operators that may be compared with that of
p-nuclear operators given in [8].

In Section 3 we use the Chevet–Saphar tensor norm dp to find the ap-
propriate tensor norm associated to the ideal of p-compact operators. We
show that Kp is associated to the left injective associate of dp, denoted by
/dp, which is equal to g′p′ . We use this to link the theory of p-summing op-
erators with that of p-compact operators. Using the results known for the
former class and natural hypotheses on E and F we show that Kp(E;F )
and Kq(E;F ) coincide for a wide range of values of p and q. We also use
the limit orders of the ideals of p-summing operators [12] to show that our
results are sharp. Furthermore, we prove that Kp is surjective and totally
accessible, and we characterize its maximal hull Kmax

p as the dual to the

ideal of p-summing operators, Πdual
p .

For the sake of completeness, we list in the Appendix the limit orders of
the ideal p-compact operators obtained by a simple transcription of those
given in [12] for p-summing operators.

When the final version of this manuscript was being written, we got to
know a preprint on the same subject authored by Albrecht Pietsch [13]. The
main results in both articles coincide. However, the material in each paper
was obtained independently. While A. Pietsch based his work on the clas-
sical theory of operator ideals following his monograph [12], we preferred
the language of tensor products developed in the book by A. Defant and
K. Floret [3].
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1. Notation and preliminaries. Throughout this paper, E and F
denote Banach spaces, E′ and BE denote respectively the topological dual
and the closed unit ball of E. A sequence (xn)n in E is said to be p-summable
if
∑∞

n=1 ‖xn‖p < ∞, and weakly p-summable if
∑∞

n=1 |x′(xn)|p < ∞ for all
x′ ∈ E′. We denote by `p(E) and `wp (E), respectively, the spaces of all
p-summable and all weakly p-summable sequences in E, 1 ≤ p < ∞. Both
spaces are Banach spaces, the first one endowed with the norm

‖(xn)n‖p =
( ∞∑
n=1

‖xn‖p
)1/p

and the second with the norm

‖(xn)n‖wp = sup
x′∈BE′

{( ∞∑
n=1

|x′(xn)|p
)1/p}

.

For p =∞, we have the spaces c0(E) and cw0 (E) formed, respectively, by all
null and all weakly null sequences of E, endowed with the natural norms.
The p-convex hull of a sequence (xn)n in `p(E) is defined as

p-co{xn} =
{ ∞∑
n=1

αnxn : (αn)n ∈ B`p′
}

where 1/p+ 1/p′ = 1 (`p′ = c0 if p = 1).

Following [16], we say that a subset K ⊂ E is relatively p-compact,
1 ≤ p ≤ ∞, if there exists a sequence (xn)n ⊂ `p(E) so that K ⊂ p-co{xn}.

The space of bounded linear operators from E to F is denoted by L(E;F )
and its subspace of finite rank operators by F(E;F ). Often the finite rank
operator x 7→

∑n
j=1 x

′
j(x)yj is associated with the element

∑n
j=1 x

′
j ⊗ yj in

E′ ⊗ F . In many cases, the completion of E′ ⊗ F with a reasonable ten-
sor norm produces a subspace of L(E;F ). For instance the injective tensor
product E′ ⊗̂ε F can be viewed as the approximable operators from E to F .
The Chevet–Saphar tensor norm gp defined on E′ ⊗ F by

gp(u) = inf
{
‖(x′n)n‖p‖(yn)n‖wp′ : u =

n∑
j=1

x′j ⊗ yj
}

gives the ideal Np(E;F ) of p-nuclear operators, 1 ≤ p ≤ ∞. If we denote by
x′ ⊗ y the 1-rank operator x 7→ x′(x)y, then

Np(E;F ) =
{
T =

∞∑
n=1

x′n ⊗ yn : (x′n)n ∈ `p(E′) and (yn)n ∈ `wp′(F )
}

is a Banach operator ideal endowed with the norm

vp(T ) = inf
{
‖(x′n)n‖p‖(yn)n‖wp′ : T =

∞∑
n=1

x′n ⊗ yn
}
.
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It is known that the space of p-nuclear operators is a quotient of E′ ⊗̂gp F ,
and the equality Np(E;F ) = E′ ⊗̂gp F holds if either E′ or F has the
approximation property (see [15, Chapter 6]). The definition of gp is not
symmetric, its transpose dp = gtp is associated with the operator ideal

N p(E;F ) =
{
T =

∞∑
n=1

x′n ⊗ yn : (x′n)n ∈ `wp′(E′) and (yn)n ∈ `p(F )
}
,

equipped with the norm

vp(T ) = inf
{
‖(x′n)n‖`w

p′ (E
′)‖(yn)n‖`p(F ) : T =

∞∑
n=1

x′n ⊗ yn
}
.

Here, N p(E;F ) = E′⊗̂dpF if either E′ or F has the approximation property.
Also, note that when p = 1, we obtain N1 = N 1 = N , the ideal of nuclear
operators, and d1 = g1 = π, the projective tensor norm.

In this paper, we focus on the study of p-compact operators, introduced
by Sinha and Karn [16] as those which map the closed unit ball into a
p-compact set. The space of p-compact operators is denoted by Kp(E;F ),
1 ≤ p ≤ ∞; it is an operator Banach ideal endowed with the norm

κp(T ) = inf{‖(xn)n‖p : T (BE) ⊂ p-co{xn}}.
We want to understand this operator ideal in terms of tensor products
and reasonable tensor norms. In order to do so we also make use of the
ideal of quasi p-nuclear operators introduced and studied by Persson and
Pietsch [14]. The space of quasi p-nuclear operators from E to F is de-
noted by QN p(E;F ). This ideal is associated by duality with the ideal of
p-compact operators [6].

Recall that an operator T is quasi p-nuclear if and only if there exists a
sequence (x′n)n ⊂ `p(E′) such that

‖Tx‖ ≤
(∑

n

|x′n(x)|p
)1/p

for all x ∈ E, and the quasi p-nuclear norm of T is given by vQp (T ) =
inf{‖(x′n)n‖p}, where the infimum is taken over all sequences (x′n)n ∈ `p(E′)
satisfying the inequality above. It is known that QN p = N inj

p , where N inj
p

denotes the injective hull of Np.
The ideal of p-summing operators, denoted by Πp, 1 ≤ p <∞, will play

an important role in Section 3. A full description of this operator ideal may
be found, for instance, in [3, Section 11], [8, Chapter 2], [15, Section 6.3] and
[12, Section 17.3.1].

For general background on tensor products and tensor norms we refer
the reader to the monographs by Defant and Floret [3], by Diestel, Fourie
and Swart [7], and by Ryan [15]. All the definitions and notation we use
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regarding tensor norms and operator ideals can be found in [3]. For further
reading on operator ideals we refer the reader to Pietsch’s book [12].

2. On p-compact sets and p-compact operators. Given a relatively
p-compact set K in a Banach space E there exists a sequence (xn)n ⊂ E so
that K ⊂ p-co{xn}. Such a sequence is not unique, so we may consider the
following definition.

Definition 2.1. Let E be a Banach space and K ⊂ E a p-compact set.
For 1 ≤ p ≤ ∞, we define

mp(K;E) = inf{‖(xn)n‖`p(E) : K ⊂ p-co{xn}},
If K ⊂ E is not a p-compact set, mp(K;E) =∞.

We say that mp(K;E) measures the size of K as a p-compact set of E.
There are some properties which derive directly from the definition of mp.

For instance, since p-co{xn} is absolutely convex, mp(K;E) = mp(co{K};E).
Also, by Hölder’s inequality, we have ‖x‖ ≤ ‖(xn)n‖`p(E), and as a conse-
quence, ‖x‖ ≤ mp(K) for all x ∈ K. Moreover, as compact sets can be con-
sidered p-compact sets for p =∞ we see that any p-compact set is q-compact
and supx∈K ‖x‖ = m∞(K;E) ≤ mq(K;E) ≤ mp(K;E) for 1 ≤ p ≤ q ≤ ∞.

Some other properties are less obvious. Suppose that E is a subspace of
another Banach space F . It is clear that if K ⊂ E is p-compact in E then
K is p-compact in F and mp(K;F ) ≤ mp(K;E). As we will see in Section 3,
the definition of mp depends on the space E. In other words, K may be
p-compact in F but not in E. We show this in Corollary 3.5.

For the particular case when F = E′′, the bidual of E, Delgado, Piñeiro
and Serrano [6, Corollary 3.6] show that a set K ⊂ E is p-compact if only
if K is p-compact in E′′ with mp(K;E′′) ≤ mp(K;E). We want to prove
that, in fact, the equality mp(K;E′′) = mp(K;E) holds. To do so we inspect
various results concerning operators and their adjoints.

Recall that when E′ has the approximation property, any operator T ∈
L(E;F ) with nuclear adjoint T ′ is nuclear and both nuclear norms coincide,
v(T ) = v(T ′) (see for instance [15, Proposition 4.10]). The analogous result
for p-nuclear operators is due to Reinov [11, Theorem 1] and states that when
E′ has the approximation property and T ′ ∈ Np(F ′;E′), then T ∈ N p(E;F ).
However, the relationship between vp(T ) and vp(T ′) is omitted. It is clear that
whenever T is inN p(E;F ) its adjoint is p-nuclear and satisfies vp(T ′)≤vp(T ).
Proposition 2.3 below shows that the isometric result is also valid for p-nuc-
lear operators. Before showing this, we need the following result.

Proposition 2.2. Let E and F be Banach spaces, E′ with the ap-
proximation property, and let T ∈ L(E;F ). If JFT ∈ N p(E;F ′′) then
T ∈ N p(E;F ) and vp(JFT ) = vp(T ).
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Proof. We only need to show the equality of the norms, as the first part
of the assertion corresponds to the first statement of [11, Theorem 1]. Note
that since E′ has the approximation property, we have N p(E;F ) = E′ ⊗̂dpF
and N p(E;F ′′) = E′ ⊗̂dp F ′′. By the embedding lemma [3, 13.3], E′ ⊗̂dp F
is a subspace of E′ ⊗̂dp F ′′ via idE′ ⊗ JF . Therefore,

νp(JFT ) = νp(T ),

and the proof is complete.

Proposition 2.3. Let E and F be Banach spaces, E′ with the approxi-
mation property, and let 1 ≤ p <∞. If T ∈ L(E;F ) has p-nuclear adjoint,
then T ∈ N p(E;F ) and vp(T ) = vp(T ′).

Proof. The first assertion is a direct consequence of [11, Theorem 1].
We only prove the isometric result. Take T as in the statement. Since T ′ ∈
Np(F ′;E′), there exist sequences (y′′n)n ∈ `p(F ′′) and (x′n)n ∈ `wp′(E′) such

that T ′ =
∑∞

n=1 y
′′
n⊗x′n. Then JFT = T ′′JE =

∑∞
n=1 x

′
n⊗ y′′n, which implies

that JFT ∈ N p(E;F ′′). It is clear that vp(T ′) ≥ vp(JFT ). By Proposition 2.2
we have T ∈ N p(E;F ) and vp(JFT ) = vp(T ). The reverse inequality always
holds.

Now we are ready to prove that the mp-measure of a p-compact setK ⊂ E
does not change if K is considered as a subset of E′′.

Theorem 2.4. Let E be a Banach space and K ⊂ E. Then K is
p-compact in E if and only if K is p-compact in E′′, and mp(K;E) =
mp(K;E′′).

Proof. We only need to show that mp(K;E) ≤ mp(K;E′′) since the claim
that K is p-compact in E if and only if K is p-compact in E′′ is proved in
[6, Corollary 3.6]. Also, in this case, the inequality mp(K;E′′) ≤ mp(K;E) is
obvious.

Suppose thatK ⊂ E is p-compact and define the operator Ψ : `1(K)→ E
such that for α = (αx)x∈K ,

Ψ(α) =
∑
x∈K

αxx.

Note that K ⊂ Ψ(B`1(K)) ⊂ co(K), thus Ψ and JEΨ are p-compact oper-
ators. Also, mp(K;E) = κp(Ψ) and mp(K;E′′) = κp(JEΨ). By [6, Proposi-

tion 3.1], Ψ ′J ′E belongs to QN p(E
′′′; `∞(K)) and vQp (Ψ ′J ′E) ≤ κp(JEΨ).

Therefore Ψ ′ ∈ QN p(E
′; `∞(K)) and vQp (Ψ ′) ≤ vQp (Ψ ′J ′E).

Since `∞(K) is injective, Ψ ′ ∈ Np(E′; `∞(K)) and vp(Ψ ′) = vQp (Ψ ′) (see
[14, Satz 38]). Now, an application of Proposition 2.3 shows that Ψ is in
N p(`1(K);E) and vp(Ψ) = vp(Ψ ′). In particular, Ψ ∈ Kp(`1(K);E) and
κp(Ψ) ≤ vp(Ψ).



The ideal of p-compact operators 275

Thus, we have

mp(K;E) = κp(Ψ) ≤ vp(Ψ) = vp(Ψ ′) = vQp (Ψ ′) ≤ vQp (Ψ ′J ′E) ≤ κp(JEΨ),

and the latter is equal to mp(K;E′′), which completes the proof.

As an immediate consequence of the theorem above we show that the
p-compact operators form a regular ideal. Recall that an operator ideal A is
said to be regular if given Banach spaces E,F , an operator T is in A(E;F )
whenever JFT ∈ A(E;F ′′).

Theorem 2.5. The ideal (Kp, κp) of p-compact operators is regular.

Proof. Let E and F be Banach spaces and T : E → F be an oper-
ator such that JFT is p-compact. By Theorem 2.4, mp(JFT (BE);F ′′) =
mp(T (BE);F ) and T is p-compact. Hence, the result follows.

Also we obtain the isometric version of [6, Corollary 3.6] which is stated
as follows.

Corollary 2.6. Let E and F be Banach spaces. Then T ∈ Kp(E;F ) if
and only if T ′′ ∈ Kp(E′′;F ′′) and κp(T ) = κp(T

′′).

Proof. The statement that T ∈ Kp(E;F ) if and only if T ′′ ∈ Kp(E′′;F ′′)
is part of [6, Corollary 3.6]. Let T be a p-compact operator. In particular,
T (BE) is relatively compact and

JFT (BE) ⊂ T ′′(BE′′) ⊂ JFT (BE)
w∗

= JFT (BE).

Applying Theorem 2.4 twice we get

mp(T (BE);F ) = mp(T (BE);F ′′) ≤ mp(T ′′(BE′′);F ′′)

≤ mp(JFT (BE);F ′′) = mp(T (BE);F ).

Since κp(T ) = mp(T (BE);F ) and κp(T
′′) = mp(T ′′(BE′′);F ′′), the isometry

is proved.

Now, we describe the duality between p-compact and quasi p-nuclear
operators. On the one hand, an operator T is quasi p-nuclear if and only if
T ′ is p-compact, and κp(T

′) = vQp (T ) [6, Corollary 3.4]. On the other hand,
T is p-compact if and only if its adjoint T ′ is quasi p-nuclear, and in this case
vQp (T ′) ≤ κp(T ) [6, Proposition 3.8]. We improve this last result by showing
the equality of the norms.

Corollary 2.7. Let E and F be Banach spaces. Then T ∈ Kp(E;F ) if

and only if T ′ ∈ QN p(F
′;E′), and κp(T ) = vQp (T ′).

Proof. The inequality vQp (T ′) ≤ κp(T ) and the equality κp(T
′′) = vQp (T ′)

always hold. A direct application of Corollary 2.6 completes the proof.
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Corollary 2.7 and the results mentioned above yield the following iden-
tities.

Theorem 2.8. Kdual
p

1
= QN p and QN dual

p
1
= Kp.

We finish this section with a factorization result for p-compact operators,
which improves [16, Theorem 3.2] and [2, Theorem 3.1]. The characterization
given below should be compared with [8, Proposition 5.23].

Proposition 2.9. Let E and F be Banach spaces. Then an operator
T ∈ L(E;F ) is p-compact if and only if T admits a factorization T = ST0R
where T0 is a p-compact operator, and R and S are compact.

Moreover, κp(T ) = inf{‖S‖κp(T0)‖R‖} where the infimum is taken over
all factorizations as above.

Proof. Suppose that T ∈ Kp(E;F ). Then, given ε > 0, there exists y =
(yn)n ∈ `p(F ) such that T (BE) ⊂ p-co{yn} with ‖(yn)n‖p ≤ κp(T )(1 + ε).
We may choose β = (βn)n ∈ Bc0 such that z = (zn)n = (yn/βn)n ∈ `p(F )
and ‖(zn)n‖p ≤ ‖(yn)n‖p(1 + ε). Now, T (BE) ⊂ {

∑∞
n=1 αnzn : (αn)n ∈ L}

where L is a compact set in B`p′ . By the factorization in [16, Theorem 3.2],
we have the commutative diagram

E
T //

R ##

F `p′
θzoo

π
zz

`p′/ker θz

θ̃z

OO

where π is the projection mapping, and θz and R are given by θz((αn)n) =∑∞
n=1 αnzn and R(x) = [(αn)n] where (αn)n ∈ L is a sequence satisfying

T (x) =
∑∞

n=1 αnzn. Since R(BE) = π(L), we see that R is compact and

T = θ̃zR.
Note also that θ̃z is p-compact. Since ‖R‖ ≤ 1, we have

κp(T ) ≤ κp(θ̃z) ≤ ‖(zn)n‖p ≤ κp(T )(1 + ε)2.

Now, using [2, Theorem 3.1] we factorize θ̃z via a p-compact operator T0
and a compact operator S, as follows:

`p′/ker θz
θ̃z //

T0 %%

F

`1/M

S

==

where M is a closed subspace of `1. A close inspection of the proof in [2]
allows us to choose the factorization with κp(θ̃z) ≤ ‖S‖κp(T0) ≤ (1+ε)κp(θ̃z)
(just consider a sequence (βn)n similar to that used above). Hence, the
factorization satisfies the desired equality κp(T ) = inf{‖S‖κp(T0)‖R‖}.

The converse is obvious.
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Note that if both E′ and F have the approximation property then T ∈
Kp(E;F ) if and only if T ∈ Kmin

p (E;F ). Moreover, κp(T ) = κmin
p (T ). We

show in the next section that the same result holds if only one of the spaces
(E′ or F ) has the approximation property.

3. Tensor norms. Our purpose in this section is to bring together the
theory of operator ideals and tensor products for the class of p-compact
operators. To start with, we use the Chevet–Saphar tensor norm to find
the appropriate tensor norm associated to the ideal of p-compact operators.
The tensor norm obtained is g′p′ , which allows us to connect the theory of
p-summing operators with that of p-compact operators. Using the results
known for the former class, under additional hypotheses on E and F we show
that Kp(E;F ) and Kq(E;F ) coincide for a wide range of p and q. We also
use the limit orders of the ideal of p-summing operators [12] to show that
the values considered for p and q cannot be improved. Some other properties
describing the structure of the ideal of p-compact operators are given.

Recall that dp(u) = inf{‖(xn)n‖wp′‖(yn)n‖p} where the infimum is taken

over all the possible representations of u =
∑n

j=1 xj ⊗ yj . We denote by /dp
the left injective associate of the tensor norm to dp. Note that /dp = g′p′ [15,

Theorem 7.20] and therefore /dp = (g∗p′)
t.

Proposition 3.1. The ideal (Kp, κp) of p-compact operators is surjec-
tive.

Proof. Let Q : G
1
� E be a quotient map. If TQ is p-compact, then

TQ(BG) = T (BE) is a p-compact set. Thus, T is p-compact and

κp(TQ) = mp(TQ(BG)) = mp(T (BE)) = κp(T ).

This completes the proof.

In order to characterize the tensor norm associated to (Kp, κp) we need
the following simple lemma. We sketch its proof for completeness. This result
should be compared with [3, Theorem 20.11].

Lemma 3.2. Let (A, ‖·‖A) be an operator ideal and let α be its associated
tensor norm.

(a) If A is surjective, then α is left injective.
(b) If A is injective, then α is right injective.

Proof. Suppose A is surjective. Using the ‘left version’ of [3, Proposition
20.3(1)], we only need to see that α is left injective on FIN, the class of all
finite-dimensional spaces.

Fix N,M,W ∈ FIN such that i : M
1
↪→W . Then we have the commuta-

tive diagram
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M ⊗α N
i⊗idN //W ⊗α N

A(M ′;N)
φ // A(W ′;N)

where φ is given by T 7→ Ti′. As i is an isometry, i′ is a metric surjection.
Now, since A is surjective, φ is an isometry, which proves (a).

The proof of (b) follows easily by a similar reasoning.

From [6, Proposition 3.11] we have N p(`n1 ;N)
1
= Kp(`n1 ;N) for every n

and every finite-dimensional space N . Since N p is associated to the tensor
norm dp, we have the following result.

Theorem 3.3. The ideal (Kp, κp) of p-compact operators is associated
to the tensor norm /dp for every 1 ≤ p <∞.

Proof. Denote by α the tensor norm associated to Kp. By Proposition 3.1
and the above lemma, α is left injective. Note that for every n and every
finite-dimensional space N we have the isometric identities

`n∞ ⊗dp N = N p(`n1 ;N) = Kp(`n1 ;N) = `n∞ ⊗α N.

Now, applying the ‘left version’ of [3, Proposition 20.9], we conclude that
α = /dp.

Proposition 3.4. The ideal (Kp, κp) is not injective for any 1 ≤ p <∞.

Proof. Suppose that Kp is injective. By Theorem 3.3 and Lemma 3.2 we
see that /dp, the associated tensor norm for Kp, is right injective. Thus, its
transpose g∗p′ is left injective. Now, by [3, Theorem 20.11], Πp is surjective,
which is a contradiction. Note that, by Grothendieck’s theorem [3, Theorem
23.10], id : `2 → `2 belongs to Πsur

p and obviously is not p-summing.

As a consequence we show that the mp-measure of a set depends on the
space which contains the set.

Corollary 3.5. Given 1 ≤ p < ∞, there exist a Banach space G, a
subspace F ⊂ G and a set K ⊂ F such that K is p-compact in G but K
fails to be p-compact in F .

Proof. Since (Kp, κp) is not injective, there exist Banach spaces E, F

and G with F
IF,G
↪→ G and an operator T ∈ L(E;F ) such that IF,GT is

p-compact but T is not. Taking K = T (BE), we see that mp(K;G) < ∞
while mp(K;F ) =∞.

Now we characterize Kmax
p , the maximal hull of the operator ideal Kp,

in terms of the ideal Πp of p-summing operators.
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Corollary 3.6. The operator ideal Kmax
p coincides isometrically with

Πdual
p .

Proof. The maximal hull of Kp is also associated to the tensor norm
/dp = (g∗p′)

t. Since the ideal Πp is associated to the tensor norm g∗p′ , by
Corollary 3 in [3, 17.8] the result follows.

Now we are in a position to show that E′⊗̂/dpF coincides withKmin
p (E;F )

for any Banach spaces E and F . For this we need the notion of totally
accessible tensor norm and operator ideal.

Recall that a tensor norm is called totally accessible if it is finitely gener-
ated and cofinitely generated [3, 15.6]. An operator ideal (A, ‖·‖A) is totally
accessible if for every finite rank operator T ∈ L(E;F ) and ε > 0 there
exist a finite-dimensional subspace M ⊂ F , a finite-codimensional subspace
L ⊂ E and S ∈ L(E/L;M) such that T = IFSQE and ‖S‖A ≤ (1+ε)‖T‖A,
where QE : E → E/L and IF : M → F are the canonical quotient mapping
and the inclusion, respectively [3, 21.2].

A finitely generated tensor norm α is totally accessible if and only if its
associated maximal Banach ideal is [3, Proposition 21.3]. By [3, Proposition
21.1(3)] and the fact that /(dp/) = /dp we see that the tensor norm /dp is
totally accessible, 1 ≤ p ≤ ∞ (see also [15, Corollary 7.15]). Therefore, we
have the following two results. For the first one we use [3, Proposition 21.3]
and for the second we use [3, Corollary 22.2].

Remark 3.7. The operator ideal Kmax
p

1
= Πdual

p is totally accessible.

Remark 3.8. For any Banach spaces E and F , Kmin
p (E;F )

1
= E′⊗̂/dpF .

With the help of Corollary 3.6 we obtain an alternative way to compute
the κp norm of a p-compact operator: just take the p-summing norm of its
adjoint. Moreover, the same holds for the minimal norm. We also have the
following isometric relations.

Proposition 3.9. There are isometric inclusions

Kmin
p

1
↪→ Kp

1
↪→ Kmax

p
1
= Πdual

p .

In particular, Kmin
p and Kp are totally accessible.

Proof. Let E and F be Banach spaces. We have

Kmin
p (E;F )

≤1
↪→ Kp(E;F )

≤1
↪→ Kmax

p (E;F )
1
= Πdual

p (E;F ).

Now, using the previous remark and [3, Corollary 22.5], we conclude that

Kmin
p (E;F )

1
↪→ Kmax

p (E;F )
1
= Πdual

p (E;F ), which implies that all the inclu-
sions above are isometries.
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The definition of the κp-approximation property in [5] was given in terms
of operators: a Banach space F has the κp-approximation property if, for
every Banach space E, F(E;F ) is κp-dense in Kp(E;F ). In other words,

F(E;F )
κp 1

= Kp(E;F ).

On the other hand, by Remark 3.7, [3, Corollary 22.5] and the previous
proposition we have

Kmin
p (E;F )

1
= F(E;F )

Kmax
p 1

= F(E;F )
κp
.

Therefore, F has the κp-approximation property if and only if the equality

Kmin
p (E;F )

1
= Kp(E;F ) holds for every Banach space E.

Any Banach space with the approximation property enjoys the κp-appro-
ximation property for 1 ≤ p <∞. This result can be deduced from [5, Theo-
rem 3.1]. Below, we give a short proof using the language of operator ideals.
It is worth mentioning that every Banach space has the κ2-approximation
property (which can be deduced from [16, Theorem 6.4]) and for each p 6= 2
there exists a Banach space whose dual lacks the κp-approximation property
[5, Theorem 2.4].

Proposition 3.10. If a Banach space has the approximation property
then it has the κp-approximation property.

Proof. We have shown that a Banach space F has the κp-approximation

property if and only if Kmin
p (E;F )

1
= Kp(E;F ) for every Banach space E.

Suppose that F has the approximation property and let T ∈ Kp(E;F ).
Using [2, Theorem 3.1] we have a factorization

E
T //

T0 ��

F

G
S

??

where T0 is p-compact and S is compact (therefore approximable). Now, by
[3, Proposition 25.2(1) b], T ∈ Kmin

p (E;F ), which concludes the proof.

Note that, in general, the converse of Proposition 3.10 is not true. For
instance, if 1≤p<2, we may always find a subspace E of `q, 1<q<2, without
the approximation property. This subspace is reflexive and has cotype 2.
Then, by the comment following [3, Proposition 21.7] one can apply [5,
Corollary 2.5] to show that F = E′ has the κp-approximation property and
fails to have the approximation property.

In this setting, the next theorem becomes quite natural. It states that the
ideal of p-compact operators can be represented in terms of tensor products
in the presence of the κp-approximation property.
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Theorem 3.11. Let E and F be Banach spaces. Then

E′⊗̂/dpF
1
= Kp(E;F )

if and only if F has the κp-approximation property. Also, the isometry re-
mains valid whenever E′ has the approximation property, regardless of F .

Proof. Note that /dp is totally accessible (see the comments preceding
Remark 3.7). Thus, the proof of the first claim is straightforward from Re-
mark 3.8.

For the second statement, take T ∈ Kp(E;F ). By Proposition 2.9, T =
T0R where R is a compact operator and T0 is p-compact. Now, using the
hypothesis that E′ has the approximation property, R is approximable by
finite rank operators and an application of [3, Proposition 25.2(2) b] gives
that T ∈ Kmin

p (E;F ). Again, the result follows by Remark 3.8.

Under natural conditions on E or F , we characterize the dual of Kp(E;F )
in terms of the ideal Ip of p-integral operators. The basic theory of p-integral
operators may be found in [8, Chapter 5], [12, Section 19.2.1] and [15, Sec-
tion 7.3]; see also [3, Sections 17.10–13] and [7, Section 1.4]. The next result
improves [5, Proposition 3.3].

Corollary 3.12. Let E and F be Banach spaces such that F has
the κp-approximation property or E′ has the approximation property. Then

Kp(E;F )′
1
= Ip′(E′;F ′), 1 ≤ p ≤ ∞ and 1/p+ 1/p′ = 1.

Proof. The proof is straightforward from Theorem 3.11 and [15, p. 174].
See also [7, Section 1.4].

In what follows, we compare p-compact and q-compact operators for
certain classes of Banach spaces. We use some well known results stated
for p-summing operators when the spaces involved are of finite cotype or
Lq,λ-spaces for some q. Our results are stated in terms of Kmin

p (E;F ), but if
F has the κp-approximation property or E′ has the approximation property,
then by Theorem 3.11, they can be stated for Kp(E;F ). First we need the
following general result. As usual, for s = ∞, we consider L(X;Y ) instead
of Πs(X;Y ), and F(Y ;X) instead of Kmin

s (Y ;X).

Theorem 3.13. Let E and F be Banach spaces such that Πr(F
′;E′) =

Πs(F
′;E′) for some 1 ≤ r < s ≤ ∞. Then Kmin

s (E;F ) = Kmin
r (E;F ).

Moreover, if πr(·) ≤ Aπs(·) on Πs(F
′;E′) then κr(·)≤Aκs(·) on Kmin

s (E;F ).

Proof. Since Πr(F
′;E′) = Πs(F

′;E′) and Πr is a maximal ideal, and
since its associated tensor norm g∗r′ is totally accessible [3, Corollary 21.1],

by the embedding theorem [3, 17.6] we have F ′′⊗̂g∗
r′
E′

1
↪→ Πr(F

′;E′). Now,

using the embedding lemma [3, 13.3] we have the following commutative
diagram:
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E′⊗̂/dsF = F ⊗̂g∗
s′
E′ �
� 1 //

≤ A
��

F ′′⊗̂g∗
s′
E′

1 //� � 1 // Πs(F
′;E′)� _

≤ A
��

E′⊗̂/drF = F ⊗̂g∗
r′
E′ �
� 1 // F ′′⊗̂g∗

r′
E′ �
� 1 // Πr(F

′;E′)

.

Therefore, /ds ≤ /dr ≤ A /ds on E′⊗F , which implies that Kmin
s (E;F )

= Kmin
r (E;F ) and κr(T ) ≤ Aκs(T ) for every T ∈ Kmin

s (E;F ).

In order to compare the norm κr(T ) with ‖T‖ or with κs(T ), we use the
constants obtained in comparing summing operators, taken from [18]. Some
of them involve the Grothendieck constant KG, the constant Br taken from
Khintchine’s inequality, and Cq(E), the q-cotype constant of E. With this
notation and the theorem above we have the following results.

Corollary 3.14. Let E and F be Banach spaces such that E is an L2,λ′-
space and F is an L∞,λ-space. Then F(E;F ) = Kmin

1 (E;F ) and κ1(T ) ≤
KGλλ

′‖T‖ for every T ∈ F(E;F ).

Proof. Note that E is an L2,λ′-space if and only if E′ is an L2,λ′-space,
and F is an L∞,λ-space if and only if F ′ is an L1,λ-space (see [3, 23.2
Corollary 1] and [3, 23.3]). Now, use Theorem 3.13, with [3, Theorem 23.10]
or [18, Theorem 10.11].

Corollary 3.15. Let E and F be Banach spaces such that F is an
L1,λ-space.

(a) If E′ has cotype 2, then F(E;F ) = K2(E;F ) = Kmin
r (E;F ) for all

r ≥ 2, and

κr(T ) ≤ λ[cC2(E
′)2(1 + logC2(E

′))]1/r‖T‖

for all T ∈ Kmin
r (E;F ).

(b) If E′ has cotype q, 2 < q < ∞, then F(E;F ) = Kmin
r (E;F ) for all

q < r <∞, and

κr(T ) ≤ λcq−1(1/q − 1/r)−1/r
′
Cq(E

′)‖T‖

for all T ∈ Kmin
r (E;F ).

In each case, c > 0 is a universal constant.

Proof. Again, F is an L∞,λ-space if and only if F ′ is an L1,λ-space. For
the first statement, note that every space has the κ2-approximation property,
Kmin

2 (E;F ) = K2(E;F ), and use Theorem 3.13 combined with [18, Theo-
rem 10.14 and Proposition 10.16]. For the second claim, use Theorem 3.13
and [18, Theorem 21.4(ii)].
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Corollary 3.16. Let E and F be Banach spaces.

(a) If E′ has cotype 2, then Kmin
r (E;F ) = K2(E;F ) for all 2 ≤ r < ∞,

and

κ2(T ) ≤ BrC2(E
′)κr(T )

for every T ∈ Kmin
r (E;F ).

(b) If F ′ has cotype 2, then Kmin
2 (E;F ) = Kmin

1 (E;F ) for all E, and

κ1(T ) ≤ cC2(F
′)(1 + logC2(F

′))1/2κ2(T )

for every T ∈Kmin
2 (E;F ). In particular, for all 1 ≤ r ≤ 2, Kmin

r (E;F )
= Kmin

1 (E;F ) for all E.
(c) If F ′ has cotype q, 2 < q < ∞, then Kmin

r (E;F ) = Kmin
1 (E;F ) for

all 1 ≤ r < q′ and E, and

κ1(T ) ≤ cq−1(1/q − 1/r′)−1/rCq(F
′)κr(T )

for every T ∈ Kmin
r (E;F ).

In each statement, c > 0 is a universal constant. Note that if E′ and F ′

have cotype 2, then Kmin
r (E;F ) = Kmin

1 (E;F ) for all 1 ≤ r <∞.

Proof. Use Theorem 3.13 and [18, Theorem 10.15] for part (a). For (b)
use [18, Corollary 10.18(a)]. Finally, use Theorem 3.13 together with [18,
Corollary 21.5(i)] for the third claim.

We finish this section by showing that the conditions on r in the corol-
laries above are sharp. We make use of the notion of limit order [12, Chapter
14], which has proved useful, specially to compare different operator ideals.
Recall that for an operator ideal A, the limit order λ(A, u, v) is defined to
be the infimum of all λ ≥ 0 such that the diagonal operator Dλ belongs to
A(`u; `v), where Dλ : (an) 7→ (n−λan) and 1 ≤ u, v ≤ ∞.

Lemma 3.17. Let 1 ≤ u, v, p ≤ ∞ and u′, v′, p′ the respective conjugates.
Then

λ(Kp, u, v) = λ(Πp, v
′, u′).

Proof. Denote by idu,v the identity map from `nu to `nv , for a fixed inte-
ger n. By Corollary 3.6 we have

κp(idu,v : `nu → `nv ) = πp(idv′,u′ : `
n
v′ → `nu′).

Then a direct application of [12, Theorem 14.4.3] gives the result.

A direct transcription of the values of the limit orders λ(Πr, v
′, u′), com-

puted in Pietsch’s monograph, gives the values of λ(Kr, u, v): just use a
combination of Propositions 22.4.9, 22.4.12 and 22.4.13 in [12]. Now we have:

Result 3.18. The conditions imposed on r in Corollaries 3.15 and 3.16
are sharp.
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Proof. (1) Let E = `u and F = `1. Note that (see Appendix, (a) and (b))

λ(Kr, u, 1) =

{
1− 1/u if r′ ≤ u ≤ ∞,

1/r if 1 ≤ u ≤ r′.

For fixed 1 ≤ r < 2 choose 2 < u < r′. Then E′ has cotype 2 and
λ(Kr, u, 1) = 1/r 6= 1/u′ = λ(K2, u, 1). Thus, Kr(`u; `1) 6= K2(`u; `1) and
so r cannot be included in Corollary 3.15(a).

Now, fix q > 2 and let E = `q′ . Then E′ has cotype q and given r < q,
we see that λ(Kr, q′, 1) = 1/r. On the other hand, λ(Ks, q′, 1) = 1/q for any
q < s. This shows that Kr(`q′ ; `1) 6= Ks(`q′ ; `1) for any r < q < s.

Note that we have also shown that if r < r̃ ≤ q, then λ(Kr̃, q′, 1) 6=
λ(Kr, q′, 1). Therefore, the inclusions Kr̃(`q′ , `1) ⊂ Kr(`q′ , `1) are strict for
any r < r̃ ≤ q.

For the case r = q, 2 < q < ∞, take E = Lq′ [0, 1] = Lq′ and F =

L1[0, 1] = L1. Suppose that F(Lq′ ;L1) = Kq(Lq′ ;L1). By Theorem 3.11,
Lq ⊗̂/dq L1 = Lq⊗̂εL1 and L1 ⊗̂(/dq)t Lq = L1 ⊗̂εLq. Since (/dq)

t = (dq′)
′ and

π′ = ε, we have L1 ⊗̂d′
q′
Lq = L1 ⊗̂π′ Lq and so (L1 ⊗̂d′

q′
Lq)
′ = (L1 ⊗̂π′ Lq)′.

Since both L∞ and Lq′ have the metric approximation property, by [3, 17.7]
and [3, 12.4] we have the isomorphism L∞ ⊗̂dq′ Lq′ = L∞ ⊗̂π Lq′ . Therefore

(L∞ ⊗̂dq′ Lq′)
′ = (L∞ ⊗̂π Lq′)′. In other words, Πq(L∞, Lq) = L(L∞, Lq)

(see [15, Section 6.3]), which contradicts [10, Theorem 7].

(2) For any 1 ≤ p <∞, there exists a compact operator in L(`p; `p) (and
therefore approximable) which is not p-compact [1, Example 3.1]. Thus,
F(`p; `p) 6= Kp(`p; `p).

Fix p ≥ 2 for all 2 ≤ r < ∞, we see that Kmin
r (`p; `p) = Kmin

p (`p; `p) =
Kp(`p; `p) = K2(`p; `p), by Corollary 3.16(a). Thus, r = ∞ cannot be in-
cluded in the first statement of this corollary.

Also, for r < 2, we may choose p and q such that 2 ≤ p ≤ r′ and
1 ≤ q ≤ r. Now, with E = `p and F = `q using the limit orders (see
Appendix) we obtain λ(Kr, p, q) = 1/r and λ(K2, p, q) = 1/2, and conclude
that the inclusion Kr(`p; `q) ⊂ K2(`p; `q) is strict.

(3) To see that the choice of r in Corollary 3.16(b) is sharp, fix r > 2.
Take p and q such that 2 ≤ q < r and 1 ≤ p ≤ r′. Let E = `p and F = `q′ ; the
limit orders satisfy λ(K2, p, q

′) = 1/2 and λ(Kr, p, q′) = 1/r (see Appendix,
(b)). Thus, K2(`p; `q′) 6= Kr(`p; `q′).

Here, we have also shown that for any r and r̃ such that 2 ≤ r < r̃, the
inclusion Kr̃(`p; `q′) ⊂ Kr(`p; `q′) is strict for suitable p and q.

(4) Now, we turn to Corollary 3.16(c). Fix q > 2 and let E = `1 and
F = `q′ . We claim that Kr(`1, `q′) 6= K1(`1, `q′) for any q′ < r. In fact, this
follows by using the limit orders: λ(K1, 1, q

′) = 1/q′ and λ(Kr, 1, q′) = 1/r.
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This also shows that Kr̃(`1; `q′) is strictly contained in Kr(`1; `q′) for any
q′ ≤ r < r̃.

Finally, we deal with the remaining case, r = q′. Take E = L1[0, 1] =
L1, F = Lq′ [0, 1] = Lq′ and suppose that Kq′(L1;Lq′) = K1(L1;Lq′), 2 <
q < ∞. Applying Theorem 3.11 we get L∞⊗̂g′qLq′ = L∞⊗̂g′∞Lq′ . Thus, the

tensor spaces have isomorphic duals. By [3, 17.7 and 13.3] we obtain the
isomorphism L1⊗̂gqLq = L1⊗̂g∞Lq. Since g∞ = \ε and gq = \g∗q′ , by [3,

Corollary 1 20.6] we have L1⊗̂g∗
q′
Lq = L1⊗̂εLq. As shown in part (1), this

cannot happen.

4. Appendix

(a) For 1 ≤ r ≤ 2,

λ(Kr, u, v) =



1/r if 1 ≤ v ≤ r, 1 ≤ u ≤ r′,
1− 1/u if 1 ≤ v ≤ r, r′ ≤ u ≤ ∞,
1/v if r ≤ v ≤ 2, 1 ≤ u ≤ v′,
1− 1/u if r ≤ v ≤ 2, v′ ≤ u ≤ ∞,
1/v if 2 ≤ v ≤ ∞, 1 ≤ u ≤ 2,

1/2− 1/u+ 1/v if 2 ≤ v ≤ ∞, 2 ≤ u ≤ ∞.
(b) For 2 < r <∞,

λ(Kr, u, v) =



1/r if 1 ≤ v ≤ r, 1 ≤ u ≤ r′,
1− 1/u if 1 ≤ v ≤ 2, r′ ≤ u ≤ ∞,

ρ if 2 ≤ v ≤ r, r′ ≤ u ≤ 2,

1/v if r ≤ v ≤ ∞, 1 ≤ u ≤ 2,

1/2− 1/u+ 1/v if 2 ≤ v ≤ ∞, 2 ≤ u ≤ ∞,
where

ρ =
1

r
+

(
1
v −

1
r

)(
1
r′ −

1
u

)
1
2 −

1
r

.
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[9] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques,
Bol. Soc. Mat. São Paulo 8 (1956), 1–79.
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