
Advances in Mathematics 329 (2018) 157–173
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Cluster values for algebras of analytic functions ✩

Daniel Carando a,b, Daniel Galicer a,b,∗, Santiago Muro a,b, 
Pablo Sevilla-Peris c

a Departamento de Matemática - PAB I, Facultad de Cs. Exactas y Naturales, 
Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
b Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS) - CONICET 
UBA, Argentina
c Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica 
de de València, Cmno Vera s/n, 46022, Valencia, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 September 2016
Received in revised form 11 August 
2017
Accepted 15 August 2017
Available online xxxx
Communicated by C. Fefferman

MSC:
46J15
46E50
30H05

Keywords:
Cluster value problem
Corona Theorem
Ball algebra
Analytic functions of bounded type
Spectrum
Fiber

The Cluster Value Theorem is known for being a weak version 
of the classical Corona Theorem. Given a Banach space X, we 
study the Cluster Value Problem for the ball algebra Au(BX), 
the Banach algebra of all uniformly continuous holomorphic 
functions on the unit ball BX ; and also for the Fréchet 
algebra Hb(X) of holomorphic functions of bounded type on 
X (more generally, for Hb(U), the algebra of holomorphic 
functions of bounded type on a given balanced open subset 
U ⊂ X). We show that Cluster Value Theorems hold for all 
of these algebras whenever the dual of X has the bounded 
approximation property. These results are an important 
advance in this problem, since the validity of these theorems 
was known only for trivial cases (where the spectrum is 
formed only by evaluation functionals) and for the infinite 
dimensional Hilbert space.
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As a consequence, we obtain weak analytic Nullstellensatz 
theorems and several structural results for the spectrum of 
these algebras.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

In the 1940’s a change of perspective in complex analysis emerged. S. Kakutani started 
a systematic study, from a Banach algebra point of view, of the space of bounded holo-
morphic functions on the open unit disk of the complex plane, H∞(D).

A prominent group of mathematicians (Kaplansky, Wermer, Kakutani, Buck, Roy-
den, Gleason, Arens and Hoffman) made several contributions in this line, and in 1961 
published a very interesting paper [23] under the fictitious name of I.J. Schark. They 
showed that for each function f ∈ H∞(D), the set of evaluations ϕ(f) of elements on the 
maximal ideal space lying in the fiber (this will be described soon) over a point z ∈ ∂D

coincides with the cluster set of f at z (i.e., the set of all limits of values of f along nets 
converging to z). This result, called the Cluster Value Theorem, was a sort of predecessor 
(and a weak version) of the famous Corona Theorem due to Carleson [13], which states 
that the characters given by evaluations on points of D are dense on the maximal ideal 
space of H∞(D).

Several domains where the Corona Theorem fails are known [24]. Also it is unknown 
whether there is any domain in Cn, for n ≥ 2, for which the Corona Theorem holds. On 
the other hand, up to our knowledge, no domain is known for which the Cluster Value 
Theorem is not true.

In the context of infinite dimensional complex analysis, characterizing the cluster 
set is a non-trivial task, even for interior points. This fact led, in the last years, many 
mathematicians in the area to study the Cluster Value Problem for different algebras 
of analytic functions on infinite dimensional Banach spaces. Among their contributions, 
they showed positive results on the Cluster Value Theorem for the algebra H∞(BX)
of bounded holomorphic functions on BX , the open unit ball of the Banach space X
[4,18,17]; the ball algebra Au(BX) of all uniformly continuous holomorphic functions 
on BX [4], and the algebra Hb(X) of holomorphic functions of bounded type on X [5]
(note that the first two, endowed with the norm ‖f‖ = supx∈BX

|f(x)| are Banach 
algebras and the last one, with the topology of uniform convergence on bounded sets, 
is a Fréchet algebra). These results were given for very specific Banach spaces. Namely, 
for the algebra H∞(BX), the known cases (besides finite dimensional spaces) are c0
and C(K), the space of null sequences and the space of continuous functions over a 
dispersed compact Hausdorff space K respectively [4,17]. For the algebras Au(BX) and 
Hb(X), the validity of the Cluster Value Theorem was known only for trivial cases (where 
the spectrum is formed only by evaluation functionals) and for the infinite dimensional 
Hilbert space [4,5]. Apart from these, there is (up to our knowledge) no general positive 
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result, although there are some for the origin: in [4, Theorem 3.1] it is shown that the 
Cluster Value Theorem for Au(BX) holds at 0 whenever X is a Banach space with a 
shrinking 1-unconditional basis (or, more generally, with a shrinking reverse monotone 
FDD [17, Corollary 2.4]). Analogous results (at the origin) were given in [5] for Hb(X).

A main tool in [4, Theorem 4.1] to show that the Cluster Value Theorem for Au(B�2)
holds at every point of the ball is the existence of transitive analytic automorphisms 
(with some necessary properties) on B�2 . Unfortunately, these ideas cannot be adapted 
to arbitrary Banach spaces (for example, to �p for p �= 2), due to the lack of these 
automorphisms.

The purpose of this note is to exhibit that the Cluster Value Theorem holds for every 
Banach space X whose dual has the bounded approximation property for the algebras 
Au(BX), Hb(X) and Hb(U) for any balanced open set U of X (see Theorems 1.1, 2.1
and 2.6). This provides answers to several open problems in the area (in particular, it 
gives answers to the questions posed in [18, Remark 2.5] and also [11, Questions 7 and 8]).

The proof of the main theorem does not rely on automorphisms on the ball of the 
space. Instead, we show in Theorem 2.5 that if the Cluster Value Theorem holds for one 
of the algebras Au(BX), Hb(X) or Hb(U) then it also holds for any of the others. Then, 
we exploit the fact that one can “freely move” in the whole space X to show that the 
Cluster Value Theorem holds in Hb(X). In some sense, we follow the spirit of [6], where 
Hb(X) is studied in order to describe the spectrum of some uniform algebras on BX . 
Here, we go one step further in this line, since we obtain concrete results for Au(BX)
from studying the same problem in Hb(X).

We also present some consequences of the Cluster Value Theorem, as weak analytic 
Nullstellensatz theorems on the corresponding algebras and some properties of their 
spectra.

The article is organized as follows. In Section 1 we state the Cluster Value Theorem 
and relate it with the Corona Theorem for Au(BX). In Section 2 we state and prove 
the Cluster Value Theorem for Hb(X); this will give as a consequence the corresponding 
theorem for Au(BX). In Section 3 we use the Cluster Value Theorems to obtain several 
results for the spectrum of the different algebras considered.

We refer the reader to [2] and [19] for the general theory of Banach spaces and to [16]
and [22] for the theory of polynomials and holomorphic functions on infinite dimensional 
spaces. We also refer to the survey [11] for several recent developments on the research 
of the spectra of algebras of analytic functions.

1. The Cluster Value Theorem for Au(BX)

We begin with some background and basic definitions. Given a Banach or Fréchet 
algebra A of holomorphic functions on an open subset U of a complex Banach space X, 
we write M(A) for the spectrum of A, i.e. the set of all (continuous and non-zero) 
complex valued homomorphisms on A. This is a subspace of the dual A∗, which is 



160 D. Carando et al. / Advances in Mathematics 329 (2018) 157–173
endowed with the weak-star topology σ(A∗, A). If A contains X∗ then M(A) is fibered 
over X∗∗, and we have the following commutative diagram:

U M(A)

X∗∗

�

�

������������

δ

π

where δ is the point evaluation mapping and π is defined by π(ϕ) = ϕ|X∗ ∈ X∗∗, 
ϕ ∈ M(A).

Let A be Au(BX) or H∞(BX). We say that the Corona Theorem holds for A whenever

M(A) = {δx : x ∈ BX}σ(A∗,A)
. (1)

In other words, the evaluations on points of BX form a dense set in M(A).
The fiber of M(A) over a point z ∈ BX∗∗ is the set

Mz(A) = {ϕ ∈ M(A) : π(ϕ) = z} .

An obvious reformulation of the Corona Theorem in terms of fibers is the following: for 
each z ∈ BX∗∗ , we have

Mz(A) ∩ {δx : x ∈ BX}σ(A∗,A)
= Mz(A).

Inspired by this, we say that A satisfies the weak Corona Theorem if for each f ∈ A and 
z ∈ BX∗∗ we have

f̂
(
Mz(A) ∩ {δx : x ∈ BX}σ(A∗,A))

= f̂
(
Mz(A)

)
, (2)

where f̂ : M(A) → C is the Gelfand transform of f , given by f̂(ϕ) = ϕ(f).
Note that if ϕ belongs to Mz(A) ∩ {δx : x ∈ BX}σ(A∗,A)

, then there is a net (xα) ⊂
BX such that δxα

σ(A∗,A)−→ ϕ, which necessarily satisfies xα
σ(X∗∗,X∗)−→ z. Since M(A) is 

compact, standard arguments show that the set at the left in (2) coincides with the so 
called cluster set of f at z, which we define now.

For a fixed function f ∈ A, and z ∈ BX∗∗ , the cluster set of f at z is the set Cl(f, z)
of all limits of values of f along nets in BX weak-star converging to z; that is

Cl(f, z) = {λ ∈ C : there exists a net (xα) ⊂ BX

such that x
σ(X∗∗,X∗)−→ z, and f(x ) → λ}.

(3)

α α
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We always have (see [4, Lemma 2.2]) that

Cl(f, z) ⊂ f̂(Mz(A)). (4)

Whenever the inclusion (4) is an equality, we say that the Cluster Value Theorem holds 
in A at z. If this happens for every z ∈ BX∗∗ , we say simply that the Cluster Value 
Theorem holds in A or, equivalently, that the weak Corona Theorem (2) holds in A.

We now present our contribution to the Cluster Value Problem for Au(BX).

Theorem 1.1. Let X be a Banach space whose dual has the bounded approximation prop-
erty, then

Cl(f, z) = f̂(Mz(Au(BX))) for every f ∈ Au(BX) and z ∈ BX∗∗ .

This theorem is a direct consequence of Theorem 2.1, which is the analogous result for 
Hb(X), and Theorem 2.5, which shows the equivalence of the Cluster Value Theorems 
for Au(BX) and Hb(X).

Suppose again that A is equal to Au(BX) or H∞(BX). It is well known that the 
Corona Theorem holds for A if and only if whenever f1, . . . , fn ∈ A satisfy |f1| + · · · +
|fn| ≥ ε > 0 on BX , there exist g1, . . . , gn ∈ A such that f1g1 + · · ·+ fngn = 1. This can 
be seen as an analytic Nullstellensatz theorem for the algebra A.

We denote by A(BX) the closed subalgebra of Au(BX) generated by X∗, that is, 
every element in A(BX) can be uniformly approximated by finite type polynomials. It 
was shown in [4, Lemma 2.3] that the Cluster Value Theorem for Au(BX) is equivalent 
to the following weak form of the analytic Nullstellensatz theorem for the ball algebra. 
Therefore, as a consequence of Theorem 1.1, we obtain:

Corollary 1.2. Let X be a Banach space whose dual has the bounded approximation 
property. Given f1, . . . , fn−1 ∈ A(BX) and fn ∈ Au(BX) such that |f1| +· · ·+|fn| ≥ ε > 0
on BX , there exist g1, . . . , gn ∈ Au(BX) such that f1g1 + · · · + fngn = 1.

2. The Cluster Value Theorem for Hb(X)

In this section we state and prove the Cluster Value Theorem for the space of entire 
functions of bounded type, together with the equivalence of the validity on the other 
algebras. We obtain Theorem 1.1 as a consequence.

For an open subset U ⊂ X, a U -bounded set is a bounded set A ⊂ U whose distance 
to the boundary of U is positive.

The space of all complex valued holomorphic functions on U which are bounded on 
U -bounded sets is denoted by Hb(U). The space Hb(U) is a Fréchet algebra when it is 
endowed with the topology of uniform convergence on U -bounded sets. Thus, for each 
homomorphism ϕ ∈ M(Hb(U)), there exists a U -bounded subset A such that
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|ϕ(f)| ≤ ‖f‖A, for every f ∈ Hb(U), (5)

where ‖f‖A is the supremum of |f | over the set A. We will write ϕ ≺ A when (5) happens. 
Given A ⊂ U we define

MA(Hb(U)) = {ϕ ∈ M(Hb(U)) : ϕ ≺ A} .

Also, given z ∈ X∗∗ we also define the A-fiber of M(Hb(U)) over z as the set

Mz,A(Hb(U)) = {ϕ ∈ M(Hb(U)) : π(ϕ) = z and ϕ ≺ A} = MA(Hb(U))∩Mz(Hb(U)),

where, of course, Mz(Hb(U)) = {ϕ ∈ M(Hb(U)) : π(ϕ) = z}. We will often simply 
write Mz,A instead of Mz,A(Hb(U)).

Let U ⊂ X be an open set, f ∈ Hb(U) and z ∈ X∗∗. For A ⊂ U , we define, follow-
ing (3), the cluster set ClA(f, z) as the set of all limits of values of f along nets in A
converging weak-star to z, that is,

ClA(f, z) = {λ ∈ C : there exists a net (xα) ⊂ A

such that xα
σ(X∗∗,X∗)−→ z, and f(xα) → λ}.

Note that ClA(f, z) is empty if (and only if) z does not belong to the weak-star closure 
of A. Also, in the particular case that z actually belongs to A, f(z) belongs to ClA(f, z). 
The cluster set ClA(f, z) can be seen as the intersection of the closures of f(V ∩ A), 
where V ranges over any basis V of the σ(X∗∗, X∗) neighborhoods of z.

It is not difficult to see that, as in Equation (4), we always have the inclusion

ClA(f, z) ⊂ f̂(Mz,A), (6)

where f̂ : M(Hb(U)) → C is the Gelfand transform of f given by f̂(ϕ) = ϕ(f). Therefore, 
we are interested in the reverse inclusion. When the equality holds for every f ∈ Hb(U), 
every z ∈ U and every U -bounded set A, we say that the Cluster Value Theorem holds 
for Hb(U). Note that the Cluster Value Theorem for Hb(X) considered in [5], which is 
stated as Clr(f, z) = f̂(Mz,r) for every f ∈ Hb(X), z ∈ X∗∗ and r > 0, is implied by 
our version, just taking A = rBX . In fact, both versions are equivalent as can be derived 
from Lemma 2.2 below.

The Corona Theorem holds for Hb(X) if the set of evaluations at points of X is 
dense in M(Hb(X)). This holds trivially if X is finite dimensional since in this case 
M(Hb(X)) = {δx : x ∈ X}. It is also easy to see that the Corona Theorem for Hb(X)
is true when the algebra generated by X∗ is dense in Hb(X) (for example, if X = c0 or 
if X = T ∗, the original Tsirelson space), in which case the spectrum is identified with 
X∗∗. Moreover, it was proved in [6, Corollary 4.7] that, for any Banach space X, any 
homomorphism ϕ restricted to the set of analytic polynomials on X is the limit of a net of 
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evaluations at points of X. It is an open question whether the Corona theorem holds for 
Hb(X) on any Banach space X for which the spectrum does not coincide with X∗∗. As 
we did in the previous section, it is easy to see that the Cluster Value Theorem for Hb(X)
is equivalent to a weak version of the bounded Corona Theorem for Hb(X), which can be 
stated as follows: let A ⊂ X be bounded, then any homomorphism ϕ ∈ M(Hb(X)) such 
that ϕ ≺ A can be approximated by a net of evaluations at points of A, or equivalently, 
for each bounded set A ⊂ X and each z ∈ X∗∗, we have

Mz,A(Hb(X)) ∩ {δx : x ∈ A}σ(Hb(X)∗,Hb(X))
= Mz,A(Hb(X)).

Of course, since the bounded Corona Theorem for Hb(X) is stronger than the Corona 
Theorem for Hb(X), it is unknown to be true unless M(Hb(X)) = {δx : x ∈ X∗∗}.

The next theorem is the main result of this section.

Theorem 2.1. Let X be a Banach space whose dual has the bounded approximation prop-
erty. Then ClA(f, z) = f̂(Mz,A) for every f ∈ Hb(X), z ∈ X∗∗ and every bounded 
set A.

We need some lemmas to prepare the proof of Theorem 2.1. The first one shows that 
a formally weaker version of the Cluster Value Theorem is actually equivalent. This 
is the main tool that will allow us to show the validity of the Cluster Value Theorem 
for Banach spaces whose duals have the bounded approximation property. As a bridge 
between the two versions of the Cluster Value Theorem we have a weak version of the 
analytic Nullstellensatz theorem for Hb(U).

Lemma 2.2. Let X be a Banach space and U ⊂ X an open set. The following are 
equivalent:

i) for each U -bounded set A, each z ∈ X∗∗ and each f ∈ Hb(U), there exists a 
U -bounded set Ã such that

f̂
(
Mz,A) ⊂ ClÃ(f, z).

ii) Given f1, . . . , fn ∈ Hb(U), with fj approximable by finite type polynomials on 
U -bounded sets for j = 1, . . . , n − 1, such that,

inf
x∈A

|f1(x)| + · · · + |fn(x)| > 0 for each U -bounded set A,

there exist g1, . . . , gn ∈ Hb(U), such that

f1g1 + · · · + fngn = 1.
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iii) For each U -bounded set A, each z ∈ X∗∗ and each f ∈ Hb(U) we have

f̂
(
Mz,A

)
= ClA(f, z).

Proof. i) =⇒ ii) Let f1, . . . , fn be as in ii). First we see that f̂1, . . . , f̂n do not have 
a common zero in M(Hb(U)). Indeed, suppose there exists ϕ ∈ M(Hb(U)) common 
zero of f̂1, . . . , f̂n. Let A be a U -bounded set such that ϕ ≺ A and set z := π(ϕ) (thus, 
ϕ ∈ Mz,A). By i), there exists a U -bounded set Ã such that ϕ(fn) ∈ ClÃ(fn, z). In other 
words, there is a net (xα) ∈ Ã such that xα

σ(X∗∗,X∗)−→ z and fn(xα) → ϕ(fn) = 0. We 
will show that 0 = f̂j(ϕ) = lim fj(xα) for every j = 1, . . . , n − 1. Therefore,

inf{|f1(x)| + · · · + |fn(x)| : x ∈ Ã} = 0,

which give us a contradiction. To see this, fix ε > 0 and consider (Pj)n−1
j=1 finite type 

polynomials such that ‖fj − Pj‖A∪Ã < ε
3 for j = 1, . . . , n − 1. Since xα

σ(X∗∗,X∗)−→ z, pick 
α0 such that |Pj(xα) − Pj(z)| < ε

3 for every α ≥ α0 and j = 1, . . . , n − 1. Then, for 
α ≥ α0,

|f̂j(ϕ) − fj(xα)| = |ϕ(fj) − fj(xα)|

≤ |ϕ(fj) − ϕ(Pj)| + |ϕ(Pj) − Pj(xα)| + |Pj(xα) − fj(xα)|

≤ ‖fj − Pj‖A + |Pj(z) − Pj(xα)| + ε

3
< ε

for every j = 1, . . . , n − 1.
Now, consider σ(f1, . . . , fn) the joint spectrum of f1, . . . , fn, i.e., the set of all 

(λ1, . . . , λn) ∈ C such that the elements f1 − λ1, . . . , fn − λn generate a proper ideal 
in Hb(U). A theorem by Arens (see [3] and also [22, Proposition 32.13]) gives

σ(f1, . . . , fn) = {
(
ϕ(f1), . . . , ϕ(fn)

)
: ϕ ∈ M(Hb(U))}.

We have just proved that f̂1, . . . , f̂n do not have a common zero in M(Hb(U)), thus 
(0, . . . , 0) does not belong to σ(f1, . . . , fn). This proves the existence of g1, . . . , gn ∈
Hb(U), such that f1g1 + · · · + fngn = 1.

ii) =⇒ iii) Suppose iii) does not hold and take a U -bounded set A, z ∈ X∗∗, f ∈
Hb(U) and ϕ ∈ Mz,A such that ϕ(f) does not belong to ClA(f, z). By changing f by 
f − ϕ(f) we can suppose, without loss of generality, that 0 is not in ClA(f, z). Then 
there exist ε > 0 and a σ(X∗∗, X∗)-neighborhood V = {w ∈ X∗∗ : |w(x∗

i ) − z(x∗
i )| <

δ for i = 1, . . . , n − 1} of z such that |f | > ε on V ∩A. Define, for each j = 1, . . . , n − 1, 
fj := x∗

j − z(x∗
j ) (which is obviously a finite type polynomial), then 

∑n−1
j=1 |fj | > δ on 

A \ V . If fn := f , we have
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inf{|f1(x)| + · · · + |fn(x)| : x ∈ A} > 0.

But f̂1, . . . , f̂n vanish at ϕ, which is a contradiction.
iii) =⇒ i) is immediate. �

Lemma 2.3. Let T be a finite rank operator on X and z ∈ X∗∗. Then for every ϕ ∈
M(Hb(X)) with π(ϕ) = z and f ∈ Hb(X) we have

ϕ(f) = ϕ(x �→ [f(x + T ∗∗z − Tx)]).

Proof. We follow the lines of the proof of [5, Lemma 1.5]. Suppose T =
∑N

j=1 x
∗
j ⊗ xj . 

Consider f =
∑∞

n=1 Pn the Taylor series expansion of the function f at the origin, and 
denote by An the symmetric n-linear form associated to the homogeneous polynomial Pn. 
We have

f(x + T ∗∗z − Tx)

= f
(
x +

N∑
j=1

(z(x∗
j ) − x∗

j (x))xj

)

=
∞∑

n=0

n∑
k=0

(
n

k

)
An

(
xn−k, (

N∑
j=1

(z(x∗
j ) − x∗

j (x))xj)k
)

=
∞∑

n=0

n∑
k=0

(
n

k

) ∑
1≤j1,...,jk≤N

An

(
xn−k, xj1 , xj2 . . . , xjk

) ∏
1≤l≤k

z(x∗
jl

) − x∗
jl

(x).

Observe that the previous series converges absolutely. Indeed, take any R > 1 and a 
vector x such that ‖x‖ ≤ R, then the absolute series

∞∑
n=0

n∑
k=0

∣∣∣
(
n

k

) ∑
1≤j1,...,jk≤N

An

(
xn−k, xj1 , xj2 . . . , xjk

) ∏
1≤l≤k

z(x∗
jl

) − x∗
jl

(x)
∣∣∣ (7)

can be bounded by 
∑∞

n=0 ‖An‖(CR)n where C is a constant that depends exclusively 
on the vectors x1, . . . , xN , x∗

1, . . . , x
∗
N , z. The convergence is now guaranteed since f ∈

Hb(X) thus, lim supn→∞
n
√

‖An‖ = 0.
The previous comment allow us to rearrange the order of the sum. Therefore,

f(x + T ∗∗z − Tx)

=
∞∑

n=0

n∑
k=0

(
n

k

) ∑
1≤j1,...,jk≤N

An

(
xn−k, xj1 , xj2 . . . , xjk

) ∏
1≤l≤k

z(x∗
jl

) − x∗
jl

(x)

=
∞∑∑(

n

k

) ∑
An

(
xn−k, xj1 , xj2 . . . , xjk

) ∏
z(x∗

jl
) − x∗

jl
(x)
k=0 n≥k 1≤j1,...,jk≤N 1≤l≤k
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= f(x) +
∞∑
k=1

∑
n≥k

(
n

k

) ∑
1≤j1,...,jk≤N

An

(
xn−k, xj1 , xj2 . . . , xjk

) ∏
1≤l≤k

z(x∗
jl

) − x∗
jl

(x).

Define for each 1 ≤ k ≤ n the polynomial

gn,k(x) :=
(
n

k

) ∑
1≤j1,...,jk≤N

An

(
xn−k, xj1 , xj2 . . . , xjk

) ∏
1≤l≤k

z(x∗
jl

) − x∗
jl

(x).

By Equation (7) we know that 
∑∞

k=1
∑

n≥k gn,k converges absolutely and uniformly on 
bounded sets of X, therefore the series is convergent in Hb(X).

Since f(x +T ∗∗z−Tx) = f(x) +
∑∞

k=1
∑

n≥k gn,k, the lemma follows by noticing that 
for each 1 ≤ k ≤ n, ϕ(gn,k) = 0 for every ϕ that lies in the fiber of z. �
Lemma 2.4. Let X be a Banach space whose dual has the bounded approximation 
property. Let z ∈ X∗∗. For each r > 0 there exists R > 0 such that for each 
σ(X∗∗, X∗)-neighborhood V of z, there is a finite rank operator T on X such that

x + T ∗∗(z) − Tx ∈ V ∩RBX for every x ∈ rBX .

Proof. If X∗ has the λ-approximation property, then there is a net (Tα)α∈Λ of finite 
rank operators on X such that: ‖Tα‖ ≤ λ for every α ∈ Λ, Tαx → x and T ∗

αx
∗ → x∗ for 

every x ∈ X, x∗ ∈ X∗ (see, for example, [14, Proposition 3.5]).
Let R := λ‖z‖ + (λ + 1)r. We may assume that V = {w ∈ X∗∗ : |w(x∗

j ) − z(x∗
j )| < ε,

j = 1, . . . , N}. Let α ∈ Λ such that ‖T ∗
α(x∗

j ) −x∗
j‖ < ε

2 min{1
r , 

1
‖z‖} (if z = 0 the minimum 

is taken as 1r ). Then if x ∈ rBX , it is easy to check that x +T ∗∗
α (z) −Tαx ∈ RBX∩V . �

Proof of Theorem 2.1. Let r > 0 and pick R > 0 as in Lemma 2.4. Using Lemma 2.2 it 
is enough to prove that if 0 /∈ ClRBX

(f, z) then 0 /∈ f̂(Mz,rBX
).

Since 0 /∈ ClRBX
(f, z) there is a σ(X∗∗, X∗)-neighborhood V of z and δ > 0 such 

that |f | > δ on V ∩ RBX . By Lemma 2.4 there is a finite rank operator T on X such 
that x + T ∗∗(z) − Tx ∈ V ∩ RBX for every x ∈ rBX . Then, the function g(x) :=
f(x + T ∗∗z − Tx) satisfies |g| > δ on rBX and therefore it is invertible in Au(rBX). 
Thus, ϕ(g) �= 0 for every ϕ ∈ M(Au(rBX)). Now, note that Mz,rBX

= Mz(Au(rBX))
[5, Lemma 1.2.]. By Lemma 2.3 we have ϕ(f) = ϕ(g) �= 0, and thus 0 /∈ f̂(Mz,rBX

). �
The following theorem shows the connection between the Cluster Value Theorem for 

Hb(X) and Au(BX).

Theorem 2.5. Let X be a Banach space. The following statements are equivalent:

i) For every bounded set A ⊂ X, every z ∈ X∗∗ and every f ∈ Hb(X) we have 
f̂
(
Mz,A(Hb(X))

)
= ClA(f, z).

ii) For every z ∈ BX∗∗ and every f ∈ Au(BX) we have f̂
(
Mz(Au(BX))

)
= Cl(f, z).
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iii) For every z ∈ BX∗∗ , every BX-bounded set A and every f ∈ Hb(BX) we have 
f̂
(
Mz,A(Hb(BX))

)
= ClA(f, z).

Proof. i) ⇒ ii): Let f ∈ Au(BX) and ϕ ∈ M
(
Au(BX)

)
⊂ M(Hb(X)) such 

that π(ϕ) = z. Fix ε > 0 and V a σ(X∗∗, X∗)-neighborhood of z. To prove that 
f̂
(
Mz(Au(BX))

)
⊂ Cl(f, z), it is enough to show that there is x ∈ V ∩ BX such that 

|ϕ(f) − f(x)| < ε. Indeed, take g ∈ Hb(X) such that ‖f − g‖BX
< ε

3 (such g exists due 
to the density of polynomials in Au(BX)). By i) we have

ĝ
(
Mz,BX

)
= ClBX

(g, z).

Then, there is x ∈ V ∩BX such that |ϕ(g) − g(x)| < ε
3 . Now, since ϕ ≺ BX , we get

|ϕ(f) − f(x)| ≤ |ϕ(f) − ϕ(g)| + |ϕ(g) − g(x)| + |g(x) − f(x)|

≤ ‖f − g‖BX
+ |ϕ(g) − g(x)| + ‖f − g‖BX

≤ ε.

ii) ⇒ iii) Let f ∈ Hb(BX) and ϕ ∈ Mz,A(Hb(BX)). We choose r < 1 such that 
A ⊂ rBX . Thus f ∈ Au(rBX) and ϕ ∈ Mz(Au(rBX)). It is easy to check that if the 
Cluster Value Theorem holds for Au(BX) then it also holds for Au(rBX). Then, by ii), 
there is a net (xα)α∈Λ ⊂ rBX such that xα

σ(X∗∗,X∗)−→ z and f(xα) → ϕ(f). Therefore

f̂
(
Mz,A(Hb(BX))) ⊂ ClrBX

(f, z).

Now the result follows from Lemma 2.2.
iii) ⇒ i) Let ϕ ∈ M(Hb(X)) and f ∈ Hb(X) such that π(ϕ) = z and ϕ ≺ A with 

A ⊂ rBX for some r > 0. Then ϕ is continuous in the topology of Hb(rBX) and thus 
we can consider ϕ ∈ M(Hb(rBX)) and f ∈ Hb(rBX). Again, if iii) holds, then the 
Cluster Value Theorem holds for Hb(rBX). Then there is a net (xα)α∈Λ ⊂ rBX such 

that xα
σ(X∗∗,X∗)−→ z and f(xα) → ϕ(f). Therefore

f̂
(
Mz,A(Hb(X))) ⊂ ClrBX

(f, z).

And again using Lemma 2.2, the result follows. �
Recall that a set U is balanced whenever λ · U ⊂ U for all |λ| ≤ 1. The following 

result shows that, given a Banach space X, if one open balanced domain in X satisfies 
the Cluster Value Theorem, so does any other one. It should be mentioned that with 
almost the same proof, it can be seen that the Cluster Value Theorem for Hb(X) is also 
equivalent to the Cluster Value Theorem for Au(U) for every (or some) bounded open 
balanced set U ⊂ X.
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Theorem 2.6. The Cluster Value Theorem holds for Hb(X) if and only if it holds for 
Hb(U) for every (or some) open balanced set U ⊂ X.

Proof. The only if part follows as in the proof of implication i) ⇒ ii) of Theorem 2.5
using that polynomials are dense in Hb(U) if U is open and balanced. This well known 
fact is stated, for example, in the comments after [16, Proposition 3.38], but since we 
were unable to find a reference to a direct proof of it, we include one for the sake of 
completeness. Indeed, take f ∈ Hb(U) and consider its series expansion 

∑∞
m=0 Pm. It is 

enough to see that the partial sums of the series converge uniformly on every U -bounded 
and balanced set A (see Remark 2.7 below). Take any such A and pick δ > 0 small 
enough that the set B := (1 + δ)A is also a U -bounded set. Since B is balanced, by the 
Cauchy inequality [22, Corollary 7.4] we have

sup
z∈B

‖Pm‖B ≤ ‖f‖B .

Therefore, every z ∈ A satisfies

|Pm(z)| ≤ ‖f‖B
(1 + δ)m ,

and this implies that the Taylor series of f converges absolutely and uniformly in A.
For the if part of the theorem we proceed as in implication iii) ⇒ i) of Theorem 2.5, 

using again the density of polynomials in Hb(U): given ϕ ∈ M(Hb(X)) with ϕ ≺ A for 
some U bounded set A ⊂ U , we extend it by density so that we can consider ϕ as an 
element in M(Hb(U)). Now we go on as in Theorem 2.5. �

The following remark was used in the previous proof. Again, it is a known result but, 
since we were unable to find a reference, we include a proof for the reader’s sake. By 
a fundamental sequence of U -bounded sets we mean a sequence {An}n of U -bounded 
subsets such that if B is another U -bounded subset, then there exists n0 with B ⊂ An0 . 
This means that convergence in Hb(U) is equivalent to uniform convergence on each An. 
A canonical fundamental sequence of U -bounded sets is given by (Un)n with

Un := {x ∈ U : ‖x‖ ≤ n and d(x, U c) ≥ 1
n
}. (8)

Remark 2.7. Let U be an open balanced domain in X. There is a fundamental sequence 
of U -bounded sets which are balanced.

Proof. Pick a positive number r > 0 such that B(0, r) is contained in U and consider 
Un defined as in (8). We will show that the balanced hull of Un,

bal(Un) := {λx : |λ| ≤ 1, x ∈ Un},
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is at positive distance from the boundary of U . Thus, (bal(Un))n is the fundamental 
sequence we are looking for. Indeed, take x ∈ Un and |λ| ≤ 1. If |λ| ≤ r

2n then ‖λx‖ ≤ r
2 ; 

since B(0, r) ⊂ U , we have d(λx, U c) ≥ r
2 . On the other hand, suppose |λ| > r

2n and 
take y ∈ U c. Then,

‖λx− y‖ = |λ| · ‖x− 1
λ
y‖ ≥ r

2n · 1
n

= r

2n2 ,

where the previous inequality follows from the fact that x ∈ Un and 1
λy ∈ U c (if not, we 

would have had that y ∈ U , since U is balanced). �
3. Applications of the Cluster Value Theorem

The Cluster Value Theorem gives information about the structure of the spectrum of 
the algebras in which it holds. In this section we present some results and consequences 
in this setting.

3.1. Fibers of M(Au(BX))

We apply our results to describe the fibers of M(Au(BX)) over points of the sphere. 
We know that for every x ∈ BX , the evaluation δx belongs to the fiber Mx(Au(BX))
over x. When there is no other element, we say that the fiber is trivial. We say that a 
point x ∈ BX is a point of continuity if any net (xα) ⊂ BX weakly converging to x also 
converges in norm [21]. We denote by SX the unit sphere of X (i.e., the set of unit norm 
vectors in X).

Proposition 3.1. Let X be a Banach space whose dual has the bounded approximation 
property. If x ∈ SX is a point of continuity, then the fiber of M(Au(BX)) over x is 
trivial.

Proof. Let ϕ ∈ Mx(Au(BX)) and f ∈ Au(BX). By the Cluster Value Theorem 1.1, there 
is a net (xα) ⊂ BX weakly converging to x such that ϕ(f) = lim f(xα). Since x is a point 
of continuity, (xα) converges in norm to x and therefore ϕ(f) = lim f(xα) = f(x). �

Recall that a Banach space has the Kadec property if every point in the sphere SX is 
point of continuity [21] (see also [15, Definition 1.1.(iii)], where this property is referred 
to as the Kadec–Klee property). In other words, if the relative norm and weak topologies 
on the unit ball BX coincide at each point of the unit sphere SX .

Corollary 3.2. Let X be a Banach space with the Kadec property whose dual has the 
bounded approximation property. Then the fiber of M(Au(BX)) over every point of SX

is trivial.
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The previous proposition provides us with the following examples of spaces X for 
which the fibers of M(Au(BX)) over points in SX are trivial:

• if X is locally uniformly rotund (it is easy to check that this implies the Kadec 
property) and X∗ has the bounded approximation property;

• if X = d(w, 1), where w = (wk)k∈N is a non-increasing sequence of positive numbers 
so that 

∑
k∈N

wk = +∞ [20, Proposition 4] (since in that proposition it is not 
assumed that wk → 0, we have X = �1 as a particular case);

• if X = �M is an Orlicz space (see [19, Chapter 4] for the definitions) for which both 
M and M∗ satisfy condition Δ2 (this gives that the dual space has the bounded 
approximation property [19]) and the Boyd index βM < ∞ (this implies that the 
space is asymptotic uniformly convex [9, Theorem 1.3.11], and therefore has the 
Kadec property).

The result for d(w, 1) (and �1) is equivalent to [5, Corollary 2.4], where the proof is 
based on the fact that points on the sphere of these spaces are strong peak points for the 
uniform algebra generated by linear functionals. This last claim can be deduced from 
the proof of [1, Theorems 2.4 and 2.6]. We remark that, since uniformly convex spaces 
are locally uniformly rotund, we can conclude that uniformly convex spaces whose duals 
have the bounded approximation property have trivial fibers on the sphere. However, this 
is essentially shown in [5, Corollary 2.3] without assuming the bounded approximation 
property for the dual.

By a classical result of Kadec, every separable Banach space can be renormed to be 
locally uniformly rotund [15, Theorem 2.6]. As a consequence, any separable Banach 
space whose dual has the bounded approximation property (which is invariant under 
renorming), can be renormed so that every fiber of Mx(Au(BX)) over points of SX are 
trivial. In the opposite direction, we have the following proposition, which shows that 
the property of having trivial fibers is an isometric condition.

Proposition 3.3. Let X be a Banach space that admits a homogeneous polynomial that 
is not weakly continuous on bounded sets and let e ∈ SX . Then there is a renorming 
Y = (X, ‖| · ‖|) such that e ∈ SY and such that the fiber over e in M(Au(BY )) is not 
trivial. Moreover the cardinality of Me(Au(BY )) is at least c.

Proof. Taking, if necessary, the composition of the polynomial of the statement with an 
affine map, we can take a polynomial P on X and a net (xα) ⊂ X, with ‖xα‖ < 1/3
for every α, weakly converging to 0 with P (xα) � 0. Let e ∈ SX and x∗ ∈ BX∗ such 
that x∗(e) = 1. At least one of the homogeneous parts (name it Q and suppose it is 
k-homogeneous) of the non-homogeneous polynomial P (· − e) is not weakly continuous 
at e and satisfies moreover, after taking a subnet,

|Q(e + xα) −Q(e)| > ε,

for some ε > 0 and every α.
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The space X is isomorphic to Y = 〈e〉 ⊕∞ Ker(x∗). Let yα = e + (xα − x∗(xα)e). 
Note that xα − x∗(xα)e belongs to BX ∩Ker(x∗). Then (yα) ⊂ BY , converges weakly 
to e ∈ BY but

|Q(yα) −Q(e)| =
∣∣∣Q(e + xα) +

k∑
j=1

(
k

j

)
(−x∗(xα))j

∨
Q((e + xα)k−j , ej) −Q(e)

∣∣∣ > ε,

for α > α0 (where 
∨
Q denotes the symmetric k-linear form associated to Q). By compact-

ness, (δyα
) has an accumulation point ϕ ∈ M(Au(BY )) that satisfies that ϕ(Q) �= δe(Q)

and π(ϕ) = e.
Moreover, since Cl(Q, e) is compact and connected in C (see [5, page 2357]) and 

has at least two elements (Q(e) and ϕ(Q)), then card(Cl(Q, e)) ≥ c. Since Cl(Q, e) ⊂
Q̂(Me(Au(BY )) the final comment follows. �

Note also that under a similar hypothesis it was proved in [5, Proposition 2.6] (see 
also [8, Theorem 3.1]) that all fibers over the interior points of BX∗∗ are non-trivial. As 
stated in [8, Remark 3.2], this assumption is necessary and, in some sense, sufficient: 
If the restriction of every polynomial to BX is weakly continuous and X∗ has the ap-
proximation property, reasoning as in [7, Theorem 7.2] we have Mz(Au(BX)) = {δz}
for all z ∈ BX∗∗ . It is unknown if the same happens if X∗ does not have the approxi-
mation property. It should also be mentioned that in most Banach spaces we can find 
homogeneous polynomials which are not weakly continuous on bounded sets (as in the 
hypothesis of Proposition 3.3), see for example [16].

3.2. The spectrum of Hb(U)

Now we present some direct consequences of the Cluster Value Theorem for the algebra 
Hb(U). In [10, Proposition 18] it was proved that for any open set U ⊂ X we have

⋃
n

Un
w∗

⊂ π(M(Hb(U))),

where (Un)n is a sequence of fundamental U -bounded sets, and that equality holds when 
U and the sets Un are absolutely convex. We now show that we also have an equality 
whenever the Cluster Value Theorem holds for Hb(U).

Corollary 3.4. Let X be Banach and let U ⊂ X be an open subset such that the Cluster 
Value Theorem holds for Hb(U). Then

i) If ϕ ∈ M(Hb(U)) and ϕ ≺ A then π(ϕ) ∈ A
w∗

.
ii) π(M(Hb(U))) =

⋃
n Un

w∗

, where (Un)n is any sequence of fundamental U -bounded 
sets.
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In particular, the previous statements are true for any open and balanced subset of a 
Banach space whose dual has the bounded approximation property.

Proof. Since ClA(f, π(ϕ)) �= ∅ for every f ∈ Hb(U), i) follows from the definition of the 
cluster set ClA. The second statement follows from the first one since any ϕ ∈ M(Hb(U))
satisfies ϕ ≺ Un for some n. �

If U is a balanced open subset and A is U -bounded, the polynomial hull of A is defined 
as (see for example [12, Section 3])

ÂP = {z ∈ X∗∗ : |P (z)| ≤ ‖P‖A, for every P ∈ P(X)},

where P stands for the Aron–Berner extension of P , see [16]. By the Hahn–Banach 
Theorem, it is easy to see that ÂP is contained in the w∗-closure of the absolutely 
convex hull of A. When the Cluster Value Theorem holds, the absolute convex hull is 
not necessary: since polynomials are dense in Hb(U), we have z ∈ ÂP if and only if 
δz ≺ A, and then the above corollary implies that ÂP ⊂ A

w∗

.
Finally, proceeding as in Proposition 3.1, it can be proven that if X is a Banach 

space whose dual has the bounded approximation property, x is a point of continuity of 
‖x‖BX , and U ⊂ X is balanced and open then ϕ ∈ M(Hb(U)) in the fiber of x is an 
evaluation if and only if ϕ ≺ ‖x‖BX , or equivalently, Mx,‖x‖BX

(Hb(U)) = {δx}. This 
happens for every x ∈ U if the space X has the Kadec property and X∗ has the bounded 
approximation property.
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