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For some centrally symmetric convex bodies K ⊂ R
n, we study the energy integral

sup
∫

K

∫
K

‖x − y‖p
r dμ(x) dμ(y),

where the supremum runs over all finite signed Borel measures μ on K of total mass one.

In the case where K = Bn
q , the unit ball of �n

q (for 1 < q ≤ 2) or an ellipsoid, we obtain the

exact value or the correct asymptotical behavior of the supremum of these integrals. We

apply these results to a classical embedding problem in metric geometry. We consider

in R
n the Euclidean distance d2. For 0 < α < 1, we estimate the minimum R for which

the snowflaked metric space (K, dα
2 ) may be isometrically embedded on the surface of a

Hilbert sphere of radius R.

1 Introduction

The study of integrals of the form∫
K

∫
K

f(x, y) dμ(x) dμ(y),
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2 D. Carando et al.

where μ is a Borel measure supported on a compact set K ⊂ R
n was mainly motivated

by problems in potential theory and geometric measure theory. Usually the function f

is given by f(x, y) = ‖x − y‖p
2 , where p is a real number whose value (or range of values)

depends on the problem under study. For example, if p= 2 − n we have the classical

Newtonian kernel. Research on this type of integrals for other kernel functions (among

them, the case where the exponent p is positive) has its origin in the works of Pólya and

Szegö [20] and Schur [24] and have attracted many authors since then (see [2–5, 8, 11–13,

15–18, 21, 25], and the references therein). Besides contributing to the classical potential

theory, this study has allowed substantial progress in other areas such as discrepancy

theory, metric inequalities and distance sums among others. This work deals with this

kind of integrals and its applications to metric geometry and embedding theory.

We denote by M1(K) the set of all finite signed Borel measures on the compact

set K ⊂ R
n of total mass one. Given a continuous function f : K × K → R and μ ∈ M1(K),

the p-energy integral of K given by μ is defined by

Ip(μ, K, f) :=
∫

K

∫
K

f(x, y)p dμ(x) dμ(y).

The p-maximal energy of K is given by

Mp(K, f) = sup{Ip(μ, K, f) : μ ∈ M1(K)}.

In this note, we study energy integrals induced by �r-norms, that is, we consider

the distance functions dr(x, y) := ‖x − y‖r. We focus our study on the case where K is a

convex and balanced body. Several estimates are obtained for K = Bn
q , the unit ball of �n

q,

or in the case that K is an ellipsoid in R
n.

Alexander and Stolarsky [5], applying geometric arguments, computed the exact

value of M1(B1
2 , d2) = M1([−1, 1], d2). A few years later, Alexander obtained the value

of M1(B3
2 , d2) in [2] using Archimedes’ beautiful theorem on zonal areas (the usually

called Hat-Box theorem). But it was Hinrichs et al. who took the big step: they managed

to construct a sequence of measures on the ball Bn
2 whose marginals w∗-converge to

the measure that maximizes the energy integral in the 1-dimensional case. They used

this to calculate the precise value of M1(Bn
2 , d2) for every n. Namely, they showed in

[12, Theorem 2.1] that

M1(Bn
2 , d2) = π1/2Γ (n+1

2 )

Γ (n
2 )

. (1)

We go further in this line, computing or estimating Mp(K, dr) for different subsets

K ⊂ R
n, different values of p (as treated by Alexander and Stolarsky in [5]), and different
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Energy Integrals and Metric Embedding Theory 3

values of r. For our purposes, we use several tools and techniques from functional

analysis and Banach space theory, such as the theory of stable measures and p-summing

operators.

Let us first introduce the following notation:

mp := Mp(B1
2 , d2) = Mp([−1, 1], d2) = sup{Ip(μ, [−1, 1], d2) : μ ∈ M1([−1, 1])}. (2)

For the Euclidean ball, we show the following formula (see Corollary 2.2):

Mp(Bn
2 , d2) = mp

π1/2Γ (
n+p

2 )

Γ (
p+1

2 )Γ (n
2 )

. (3)

In fact, this will be a particular case of a result for ellipsoids in R
n given in

Theorem 2.1. Note that, since m1 = 1 (see [5, Lemma 3.5]), this formula recovers (1). Also,

we show in Theorem 2.6 that Mp(Bn
2 , dr) behaves asymptotically as np/r for r ∈ [1, 2) and

0 < p< r.

We consider convex and balanced bodies K ⊂ R
n as well. These sets can be seen

as the unit ball of R
n with some norm. In Proposition 2.9, we relate the value of Mp(K, d2)

with a geometric property of K. Loosely speaking, let Wt(K) be the width of K in the

direction t (i.e., the distance between the supporting hyperplanes of K orthogonal to t).

Then, Mp(K, d2) can be controlled in terms of the average value of Wt(K)p. If K is the unit

ball of an n-dimensional real Banach space E = (Rn, ‖ ‖E ), we give in Proposition 2.10 a

lower bound for the maximal p-energy Mp(BE , d2) which is related with the 2-summing

norm of the identity operator from E to �n
2. This bound is obtained by calculating the

supremum of the maximal energies over all the ellipsoids contained in K. For K = Bn
q

and 1 < q ≤ 2 we obtain, in Theorem 2.11, that Mp(Bn
q , d2) behaves asymptotically as np/q′

,

where 1
q + 1

q′ = 1.

Let K ⊂ R
n be a compact set. A classical result in metric geometry due to Schoen-

berg [22] asserts that, for 0 < α < 1, the snowflaked metric space (K, dα
2 ) can be isometri-

cally embedded in the surface of a Hilbert sphere (see Theorem 2.12 for details). Stated

in another way, for every compact set K ⊂ R
n, there exist a number R and a mapping

j : (K, dα
2 ) → (R · S�2 , ‖ · ‖�2) (4)

that preserves distances. Therefore, it is natural to ask for the least possible R for

which there exists a distance preserving mapping j as in (4) (colloquially known as

Schoenberg’s radius for the metric space (K, dα
2 )). It was Alexander and Stolarsky [5] who
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4 D. Carando et al.

connected this problem, which is essentially a question in metric geometry, with the

classical potential theory. They proved that the least possible radius can be computed

from the 2α-maximal energy M2α(K, d2) (see also Theorem 2.12).

We use this close connection and our results on energy integrals to compute or

estimate these minimum radii for different compact sets K in R
n. As a consequence, we

show in Theorem 2.14 that, for 1 < q ≤ 2 and 0 < α < 1, the minimum R for which the

metric space (Bn
q , dα

2 ) may be isometrically embedded on the surface of a Hilbert sphere

of radius R behaves asymptotically as nα/q′
, where 1

q + 1
q′ = 1.

2 Energy Integrals: The Results

2.1 Energy integrals induced by the Euclidean distance

In this section, we prove formula (3). In fact, we will prove a more general result for ellip-

soids, for which (3) turns out to be a particular case. An ellipsoid in R
n is the image of

the Euclidean ball by a nondegenerate linear operator. The following theorem gives the

value of Mp(E, d2) for E an ellipsoid. Its proof makes use of some properties of absolutely

summing operators. We refer the reader to [9, 10, 19, 27] for definitions and a complete

treatment of this subject.

It is important to mention that, for p≥ 2, we have mp = +∞. Indeed, if μa is the

measure supported on the points −1, 0, and 1 with weights a, 1 − 2a, and a, respec-

tively, we have Ip(μa, [−1, 1], d2) → +∞ as a→ +∞. And, of course, also Mp(K, d2) = +∞
for every centrally symmetric convex body. Therefore, we state all our results for the

range 0 < p< 2.

Theorem 2.1. Let T ∈L(�n
2, �

n
2) be a bounded linear operator. For 0 < p< 2, we have

Mp(T(Bn
2 ), d2) = mpπp(T)p,

where πp(T) stands for the absolutely p-summing norm of the operator T . �

For I ∈L(�n
2, �

n
2) the identity operator we have, by [9, Theorem 11.10, Exercise

11.24], the equality

πp(I )p = π1/2Γ (
n+p

2 )

Γ (
p+1

2 )Γ (n
2 )

.

Using this and Stirling’s formula [26] we obtain the following result.
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Energy Integrals and Metric Embedding Theory 5

Corollary 2.2. Given n∈ N, and 0 < p< 2, then

Mp(Bn
2 , d2) = mp

π1/2Γ (
n+p

2 )

Γ (
p+1

2 )Γ (n
2 )

= np/2

(
mpπ

1/2

Γ (
p+1

2 )
+ o(1)

)
. �

We remark that we can obtain a direct and rather self-contained proof of

Corollary 2.2, which makes no use of absolutely summing operators. Indeed, we can

proceed as in the proof of Theorem 2.1 and use (10) instead of Lemma 2.3 and obtain the

corollary.

Some comments are in order. The absolutely p-summing norms for operators on

Hilbert spaces are all equivalent to the Hilbert–Schmidt norm, with constants depending

only on p (as can be deduced from [10, Corollay 3.16]). Therefore, there exist positive

constants Ap, Bp such that, for every n and every ellipsoid E ⊂ R
n with orthogonal axes

and radii a1, . . . , an, we have

Ap(a
2
1 + · · · + a2

n)p/2 ≤ Mp(E, d2) ≤ Bp(a
2
1 + · · · + a2

n)p/2. (5)

We write λ for the normalized surface measure on the sphere Sn−1. This is an

abuse of notation, since we have a different measure for each n, but there is no risk of

confusion. Let c(n)
p be the n-dimensional pth absolute moment defined as follows:

c(n)
p =

(∫
Sn−1

|t1|p dλ(t)
)1/p

.

Although it can easily be obtained by passing to spherical coordinates, we do not need

the explicit value of c(n)
p for our purposes. To prove the theorem, we need the following

result, which extends (10) and can be found in [27, Lemma 10.5].

Lemma 2.3. Let n be a positive integer, and T ∈L(�n
2, �

n
2). For 0 < p< ∞ we have

‖Tx‖p
2 = (c(n)

p )−p
∫

Sn−1
|〈x, t〉|p dν(t),

where ν is the measure given by

∫
Sn−1

f(x) dν(x) =
∫

Sn−1
f
(

t

‖Tt‖2

)
‖Tt‖p

2 dλ(t),

for every continuous function on Sn−1. �
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6 D. Carando et al.

Note that if ν is the measure defined in the previous lemma, by [27, Proposition

10.4] we have

ν(Sn−1) =
∫

Sn−1
‖Tt‖p

2 dλ(t) = (c(n)
p )pπp(T)p. (6)

Two technical lemmas are also needed. First, let us say that an atomic measure ν

on [−1, 1] has symmetric support if it is supported in a set of points −1 ≤ p1 < p2 < · · · <
pN−1 < pN ≤ 1 with pj = −pN+1− j for every j = 1, . . . , N. If moreover ν([−1, 1]) = 1 and

ν(pj) = ν(pN+1− j) for every j = 1, . . . , N we say that ν is 1-balanced. Such a measure can

be written as ν =∑N
j=1 λ jδpj on [−1, 1] with

∑N
j=1 λ j = 1, −1 ≤ p1 < p2 < · · · < pN−1 < pN ≤ 1

as above and λ j = λN+1− j for every j = 1, . . . , N.

The following lemma shows that 1-balanced measures are enough to com-

pute mp.

Lemma 2.4. For mp as in (2), we have

mp = sup
∫

[−1,1]

∫
[−1,1]

|u− v|p dν(u) dν(v),

where the supremum runs over all 1-balanced atomic measures ν ∈ [−1, 1]. �

Proof. As in [5, Lemma 3.3], it is easy to see that mp = sup Ip(ν, [−1, 1], d2), where the

supremum runs over all atomic measures ν ∈ [−1, 1] of total mass one. Moreover, the

supremum can be taken within all atomic measures with symmetric support (adding

points with weight zero if necessary).

Thus, to prove the lemma it is enough to show that, among all the measures of

total mass one with support in a given symmetric set {p1, . . . , pN}, Ip(·, [−1, 1], d2) attains

its maximum at a 1-balanced one. Define φ the quadratic form given by:

φ(x1, . . . , xN) =
∑
i, j

xixjd2(pi, pj)
p =

∑
i, j

xixj‖pi − pj‖p
2 ,

and observe that, if ν is the measure given by
∑N

j=1 λ jδpj , we have Ip(ν, [−1, 1], d2) =
φ(λ1, . . . , λN) =∑

i, j λiλ j‖pi − pj‖p
2 . By [5, Theorem 3.3], the quadratic form φ achieves a

unique absolute maximum on the affine hyperplane
∑N

j=1 xj = 1. Since the set {p1, . . . , pN}
is symmetric, it is easy to check that φ(λ1, . . . , λN) = φ(λN, . . . , λ1) for all λ. This,

together with the uniqueness of the maximum shows that the measure ν0 maximizing

Ip( · , [−1, 1], d2) must be balanced. �
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Energy Integrals and Metric Embedding Theory 7

We do not have a closed formula for mp. However, it is easy to obtain numerical

estimations of this constant. Indeed, by the previous lemma we can compute mp as the

supremum of some atomic measures. Thus, for each finite set of points {p1, . . . , pN} ⊂
[−1, 1], the maximum of the quadratic form φ in the lemma can be calculated by solving

a linear system of equations (see [5, Theorem 3.3]).

We now define, for t ∈ Sn−1, the projection Πt : Bn
2 → [−1, 1] by

Πt(x) = 〈x, t〉. (7)

As in [12], we show how to relate our n-dimensional problem to the 1-dimensional case.

We emphasize that the construction of the sequence of measures (see Lemma 2.5) draws

heavily on the clever results of Hinrichs et al. [12].

Lemma 2.5. Let e1 be the canonical unit vector (1, 0, . . . , 0) ∈ R
n and ν be a 1-balanced

atomic measure on [−1, 1]. There exists a sequence of rotation invariant measures (ηk)k≥1

in M1(Bn
2 ) such that the sequence of projected measures ηk := ηkΠ

−1
e1

w∗−→ ν. �

Proof. Fix any 1-balanced atomic measure ν =∑N
j=1 λ jδpj on [−1, 1]. By the [12, proof of

Lemmas 2.8 and 2.9] (identifying the segment [−1, 1] with the diameter De1 of the ball in

the direction e1) there exists a sequence of rotation invariant measures (μk)k such that

the sequence of projected measures μk
w∗−→ 1

2 (δ−1 + δ1). For j = 1, . . . , N, set ρ j := |pj|. If

ρ j > 0 we define μ
j
k ∈ M1(Bn

2 ) the measure supported in ρ j Bn
2 as:

μ
j
k(A) := μk

(
1

ρ j
A
)

,

for every Borel set A∈ ρ j Bn
2 . On the other hand, if pj = 0 we define μ

j
k = δpj = δ0. Observe

now that, for every index j = 1, . . . , N, the measure λ jμ
j
k is rotation invariant and of total

mass λ j. Moreover, using that pj = −pN+1− j (the support of ν is symmetric) and the fact

that λ j = λN+1− j (ν is 1-balanced) we obtain that the sequence of projected measures

λ jμ
j
k

w∗−→ 1

2
(λ jδpj + λ jδpN+1− j ) = 1

2
(λ jδpj + λN+1− jδpN+1− j ).

If we set ηk :=∑N
j=1 μ

j
k we have that ηk is a rotation invariant measure in M1(Bn

2 ) and

η̄k
w∗−→

N∑
j=1

1

2
(λ jδpj + λN+1− jδpN+1− j ) = ν. �

Now we are ready to prove our first theorem.
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8 D. Carando et al.

Proof of Theorem 2.1. First observe that

Mp(T(Bn
2 ), d2) = sup

∫
Bn

2

∫
Bn

2

‖Tx − Ty‖p
2 dμ(x) dμ(y),

where the supremum runs over all finite signed Borel measures μ on Bn
2 of total mass

one. Fix μ ∈ M1(Bn
2 ) and set

Ip(μ; T) :=
∫

Bn
2

∫
Bn

2

‖Tx − Ty‖p
2 dμ(x) dμ(y).

By Lemma 2.3, we have

Ip(μ; T) =
∫

Bn
2

∫
Bn

2

(c(n)
p )−p

∫
Sn−1

|〈x − y, t〉|p dν(t) dμ(x) dμ(y)

= (c(n)
p )−p

∫
Sn−1

[∫
Bn

2

∫
Bn

2

|〈x − y, t〉|p dμ(x) dμ(y)

]
dν(t).

Now we use the notation introduced in (7) to get

Ip(μ; T) = (c(n)
p )−p

∫
Sn−1

[∫
Bn

2

∫
Bn

2

|Πt(x) − Πt(y)|p dμ(x) dμ(y)

]
dν(t)

= (c(n)
p )−p

∫
Sn−1

[∫1

−1

∫1

−1
|u− v|p dμΠ−1

t (u) dμΠ−1
t (v)

]
dν(t)

= (c(n)
p )−p

∫
Sn−1

Ip(μΠ−1
t , [−1, 1], d2) dν(t).

Note that μΠ−1
t is also a finite signed Borel measure of total mass one on [−1, 1]. Then,

we have Ip(μΠ−1
t , [−1, 1], d2) ≤ mp and

Ip(μ; T) ≤ (c(n)
p )−p

∫
Sn−1

mp dν(t) = mp(c
(n)
p )−pν(Sn−1)

= mpπp(T)p,

where the last equality follows by (6). This gives M(T(Bn
2 ), d2) ≤ mpπp(T)p.

Let us show the reverse inequality. By standard manipulations it is easy to

see that if μ is any rotation invariant measure, then, for every t ∈ Sn−1, we have

Ip(μΠ−1
t , [−1, 1], d2) = Ip(μΠ−1

e1
, [−1, 1], d2), where e1 = (1, 0, . . . , 0). Then,

Ip(μ; T) = (c(n)
p )−p

∫
Sn−1

Ip(μΠ−1
t , d2) dν(t) = (c(n)

p )−pIp(μΠ−1
e1

, d2)ν(Sn−1)

= Ip(μΠ−1
e1

, [−1, 1], d2)πp(T)p, (8)
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Energy Integrals and Metric Embedding Theory 9

for any rotation invariant measure μ. Given ε > 0, by Lemma 2.4 there is a 1-balanced

measure ζ on [−1, 1] such that Ip(ζ, [−1, 1], d2) ≥ (1 − ε)mp. With the help of Lemma 2.5,

we can take a sequence (ηk)k≥1 of rotation invariant measures on Bn
2 such that ηkΠ

−1
e1

w∗−→
ζ . As in [15, Corollary 2.7], it is easy to see that Ip( · , [−1, 1], d2) is w∗-sequentially con-

tinuous on the set of all Borel measures on De1 . Hence,

Mp(T(Bn
2 ), d2) ≥ Ip(ηk; T) = Ip(ηkΠ

−1
e1

, [−1, 1], d2)πp(T)p

and the latter tends to Ip(ζ, [−1, 1], d2)πp(T)p ≥ (1 − ε)mpπp(T)p. Since ε is arbitrary, we

have shown that Mp(T(Bn
2), d2) = mpπp(T)p. �

2.2 Energy integrals induced by the �r-norm (1 ≤ r < 2)

Now, we deal with the estimates of the p-maximal energy of the Euclidean ball induced

by the distance functions dr(x, y) = ‖x − y‖r for r ∈ [1, 2). We do not analyze the case

where r > 2 since in this case, (Rn, dr) is not a quasihypermetric space (see [15] and

the references therein) and then the corresponding energy integrals are not uniformly

bounded. Our goal is to prove the following asymptotic behavior of Mp(Bn
2 , dr). Note that

for r = 2 this is contained in Corollary 2.2.

Theorem 2.6. Let r ∈ [1, 2] and p∈ (0, r), then Mp(Bn
2 , dr) behaves asymptotically

as np/r. �

Now we recall the basic property of stable measures (see, e.g., [1, Theorems

6.4.15–6.4.18; 9, Section 24; 19, Lemma 21.1.3]). For any n∈ N and r ∈ [1, 2), there exists a

measure mn
r (called the r-stable measure) defined on the Borel sets of R

n such that

‖x‖p
r = c−p

r,p

∫
Rn

|〈x, w〉|p dmn
r (w) (9)

for all p∈ (0, r). Here cr,p is the pth moment of the 1-dimensional stable measure m1
r ,

namely,

cr,p =
(∫

R

|w|p dm1
r (w)

)1/p

.

The exact value of cr,p can be found, for example, in [19, 21.1.2].

For r = 2, the measure mn
r is just the n-dimensional Gaussian measure γn. For this

measure, we actually have for x ∈ R
n and every 0 < p< ∞,

‖x‖p
2 = c−p

2,p

∫
Rn

|〈x, t〉|p dγn(t) = b(n)
p

∫
Sn−1

|〈x, t〉|p dλ(t) (10)
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10 D. Carando et al.

and

c2,p =
(∫

R

|w|p dγ1(w)

)1/p

= 2

(
Γ (

1+p
2 )

Γ ( 1
2 )

)1/p

; b(n)
p = π1/2Γ

(n+p
2

)
Γ
(

p+1
2

)
Γ
(

n
2

) .
The first equality in (10) is just the stability property of Gaussian measures. The second

equality follows using spherical coordinates. Note that the equality between the first

and the third expressions is just Lemma 2.3 applied to the identity operator in R
n.

Using r-stable measures it is possible to obtain upper bounds for Mp(BE , dr).

Note that, in the 1-dimensional case, we have dr = d2. Therefore, the energies induced on

[−1, 1] by all these distance functions obviously agree.

Lemma 2.7. Let E be an n-dimensional Banach space. If r ∈ [1, 2] and 0 < p< r, then

Mp(BE , dr) ≤ mpc−p
r,p

∫
Rn

‖t‖p
E ′ dmn

r (t),

where mn
r is the n-dimensional r-stable measure. �

Proof. Let us apply (9) to compute the p-maximal energy of BE induced by dr.

Mp(BE , dr) = sup
μ∈M1(BE )

∫
BE

∫
BE

‖x − y‖p
r dμ(x) dμ(y)

= sup
μ∈M1(BE )

∫
BE

∫
BE

[
c−p

r,p

∫
Rn

|〈x − y, t〉|p dmn
r (t)

]
dμ(x) dμ(y)

= sup
μ∈M1(BE )

c−p
r,p

∫
Rn

[∫
BE

∫
BE

|〈x − y, t〉|p dμ(x) dμ(y)

]
dmn

r (t)

= sup
μ∈M1(BE )

c−p
r,p

∫
Rn

‖t‖p
E ′

[∫
BE

∫
BE

∣∣∣∣
〈
x − y,

t

‖t‖E ′

〉∣∣∣∣p dμ(x) dμ(y)

]
dmn

r (t)

= sup
μ∈M1(BE )

c−p
r,p

∫
Rn

‖t‖p
E ′

[∫1

−1

∫1

−1
|u− v|p dμt/‖t‖E ′ (u) dμt/‖t‖E ′ (v)

]
dmn

r (t)

≤ mpc−p
r,p

∫
Rn

‖t‖p
E ′ dmn

r (t). �

We can also use (10) to derive an upper bound of Mp(BE , d2) using the average

over the unit sphere. We will return later to this point because it is possible to obtain

some geometric properties of K related with its average width.

We set some useful notation first. Let (an)n∈N and (bn)n∈N be sequences of non-

negative numbers. If there are positive constants A and B such that Abn ≤ an ≤ Bbn
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Energy Integrals and Metric Embedding Theory 11

for every n, we write (an)n∈N � (bn)n∈N . On the other hand, we write (an)n∈N � (bn)n∈N or

(bn)n∈N � (an)n∈N, in the case there is a positive constant C such that an ≤ C bn for every

natural number n.

In the following lemma, we present the asymptotic behavior of the average of

powers of �r-norms on the unit sphere.

Lemma 2.8. Given n∈ N, p> 0, and 1 ≤ r < ∞, we have
∫

Sn−1
‖t‖p

r dλ(t) � n( 1
r − 1

2 )p. �

Proof. We define ϕn
r : R+ → R by

ϕn
r (p) =

∫
Sn−1

[
n( 1

2 − 1
r )‖t‖r

]p
dλ(t).

Then, what we have to prove is that ϕn
r (p) � 1.

Standard computations show that

∫
Rn

‖x‖r
r dγn(x) =

n∑
i=1

∫
Rn

|xi|r dγn(x) = ncr
2,r .

Therefore, using spherical coordinates and Stirling’s formula we obtain
∫

Sn−1
‖t‖r

r dλ(t) � n1− r
2

or, equivalently,

ϕn
r (r) =

∫
Sn−1

[n
1
2 − 1

r ‖t‖r]
rdλ(t) � 1.

This gives the desired result for the particular case p= r.

We now consider 2 ≤ r < ∞. In this case, for every t ∈ Sn−1 we have

1 = ‖t‖2 ≤ n( 1
2 − 1

r )‖t‖r,

which gives the lower bound ϕn
r (p) ≥ 1 for every p> 0 and shows that ϕn

r is an increasing

function of p. As a consequence, for 0 < p≤ r we have 1 ≤ ϕ(p) ≤ ϕ(r) � 1.

For p> r, note that

‖t‖r ≤ n( 1
r − 1

p )‖t‖p

and then

[n( 1
2 − 1

r )‖t‖r]
p ≤ [n( 1

2 − 1
r )n( 1

r − 1
p )‖t‖p]p = [n( 1

2 − 1
p )‖t‖p]p.
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12 D. Carando et al.

Therefore,

1 ≤ ϕn
r (p) =

∫
Sn−1

[n( 1
2 − 1

r )‖t‖r]
p dλ(t) ≤

∫
Sn−1

[n( 1
2 − 1

p )‖t‖�p]
p dλ(t) � 1,

which concludes the proof for 2 ≤ r < ∞.

Suppose now that 1 ≤ r < 2. Then, for every t ∈ Sn−1 we have

n1/2−1/r‖t‖r ≤ 1 (11)

and thus ϕn
r (p) ≤ 1 for every p> 0. For the reverse inequality, consider first 0 < p< 1.

Since ϕn
r is a decreasing function and r ≥ 1, we get 1 � ϕn

r (r) ≤ ϕn
r (p) as above. For p≥ 1,

using spherical coordinates and Hölder inequalities we obtain

(∫
Sn−1

‖t‖p
r dλ(t)

)1/p

≥
∫

Sn−1
‖t‖r dλ(t) � 1√

n

∫
Rn

‖x‖r dγn(x)

≥ 1√
n

(
n∑

i=1

∣∣∣∣
∫

Rn
|xi| dγn(x)

∣∣∣∣r
)1/r

� n1/r−1/2.

This shows that ϕn
r (p) � 1 and ends the proof. �

Now we can prove the main result of this section.

Proof of Theorem 2.6. We can apply Lemma 2.7 in the particular case where E is the

n-dimensional Euclidean space. Then,

Mp(Bn
2 , dr) ≤ mpc−p

r,p

∫
Rn

‖t‖p
2 dmn

r (t).

We can estimate this last integral writing the �2-norm as an average on the unit

sphere, so

Mp(Bn
2 , dr) ≤ mpc−p

r,p

∫
Rn

‖t‖p
2 dmn

r (t)

= mpc−p
r,p

∫
Rn

b(n)
p

∫
Sn−1

|〈x, t〉|p dλ(t) dmn
r (t)

= mpb(n)
p

∫
Sn−1

c−p
r,p

∫
Rn

|〈x, t〉|p dmn
r (t) dλ(t)

= mpb(n)
p

∫
Sn−1

‖w‖p
r dλ(t).
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Energy Integrals and Metric Embedding Theory 13

Recall that b(n)
p = π1/2Γ (

n+p
2 )

Γ (
p+1

2 )Γ ( n
2 )

� np/2. Thus, by Lemma 2.8, we have

Mp(Bn
2 , dr) � np/2n(1/r−1/2)p = np/r.

To prove the reverse inequality, as in the proof of Theorem 2.2 and using Lemma 2.5,

given ε > 0 we can find a sequence of rotation invariant measures (ηk)k such that

Mp(Bn
2 , dr) = sup

μ∈M1(Bn
2 )

c−p
r,p

∫
Rn

‖t‖p
2

[∫1

−1

∫1

−1
|u− v|p dμt/‖t‖2(u) dμt/‖t‖2(v)

]
dmn

r (t)

≥ lim sup
k→∞

c−p
r,p

∫
Rn

‖t‖p
2

[∫1

−1

∫1

−1
|u− v|p d(ηk)t/‖t‖2(u)d(ηk)t/‖t‖2(v)

]
dmn

r (t)

≥ mp(1 − ε)c−p
r,p

∫
Rn

‖t‖p
2 dmn

r (t) � np/r. �

2.3 Energy integrals on the ball of �n
q

Given a centrally symmetric convex body K, we have some general upper estimates for

the energies induced by the different �r-norms as in Lemma 2.7. However, it seems to be

difficult compute the exact value of Mp(K, dr) or its asymptotic behavior. In this section,

we deal with �q-balls for 1 < q < 2.

A combination of Lemma 2.7 and (10) gives the following result, which has some

geometrical interest.

Proposition 2.9. Let E = (Rn, ‖ ‖E ) be a real Banach space of dimension n. For 0 < p< 2,

we have

Mp(BE , d2) ≤ mpb(n)
p

∫
Sn−1

‖t‖p
E ′ dλ(t),

where E ′ denotes the dual of E . �

This proposition has the following geometrical interpretation. Let Wt = Wt(BE ) be

the width of BE in the direction t. This is defined to be the (Euclidean) distance between

the supporting hyperplanes of BE orthogonal to t, and can be computed as

Wt = sup
x∈BE

〈x, t〉 − sup
x∈BE

〈x,−t〉 = 2‖t‖E ′ .

As a consequence, we have established a relationship between Mp(BE , d2) and the

expected value of Wp
t , which is a kind of average width of BE .

Let E = (Rn, ‖ ‖E ) be a real Banach space of dimension n, we now give a lower

bound for the energy integral Mp(BE , d2) which is related with the 2-summing norm of
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14 D. Carando et al.

the identity operator from E to �n
2. This bound is obtained by computing the supremum

of the maximal energies over all the ellipsoids contained in BE .

Proposition 2.10. There exist a positive constant C p such that for every real n-

dimensional Banach space E = (Rn, ‖ ‖E ) we have

C p π2(iE,2 : E → �n
2)

p ≤ Mp(BE , d2),

where iE,2 : E → �n
2 is the formal identity. �

Proof. Observe that, if S : �n
2 → E is an operator of norm one, then the ellipsoid S(Bn

2 )

is contained in BE . Therefore, Mp(S(Bn
2 ), d2) ≤ Mp(BE , d2). Using Theorem 2.1, we obtain

that mpπp(iE,2S : �n
2 → �n

2)
p = Mp(S(Bn

2 ), d2) ≤ Mp(BE , d2). Since the absolutely p-summing

norms for operators on Hilbert spaces are all equivalent to the 2-summing norm (as can

be deduced from [10, Corollary 3.16, Theorem 4.10]) we know there exists a constant Ap

which depends only on p such that Apπ2(iE,2S : �n
2 → �n

2) ≤ πp(iE,2S : �n
2 → �n

2). Thus,

Ap
pmp︸ ︷︷ ︸
C p

π2(iE,2S : �n
2 → �n

2)
p ≤ Mp(BE , d2). (12)

Since Equation (12) holds for every norm one operator S : �n
2 → E we obtain

C p sup
{
π2(iE,2S : �n

2 → �n
2)

p : S ∈L(�n
2, E), ‖S‖ = 1

}≤ Mp(BE , d2). (13)

Now by Kwapień’s test [9, Proposition 11.8] we have that

π2(iE,2 : E → �n
2) = sup

{
π2(iE,2S : �n

2 → �n
2) : S ∈L(�n

2, E), ‖S‖ = 1
}
.

Therefore, by (13), we get

C pπ2(iE,2 : E → �n
2)

p ≤ Mp(BE , d2).

This concludes the proof. �

We now describe the asymptotical behavior of Mp(Bn
q , d2) for 1 < q ≤ 2.

Theorem 2.11. Given 1 < q ≤ 2 and p> 0, then Mp(Bn
q , d2) behaves asymptotically as

np/q′
, where 1

q + 1
q′ = 1. �
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Energy Integrals and Metric Embedding Theory 15

Proof. By Proposition 2.9 and Lemma 2.8, we have

Mp(Bn
q , d2) ≤ mpb(n)

p

∫
Sn−1

‖t‖p
q′ dλ(t) � np/q′

.

On the other hand, by Proposition 2.10, we know that π2(�
n
q → �n

2)
p � Mp(BE , d2).

Now, by [19, Lemma 22.4.9] or [7, Theorem 1], we know that π2(�
n
q → �n

2)
p � np/q′

which

gives the lower estimate. �

Some comments are in order. It should be mentioned that we can avoid the

use of Proposition 2.10 for the lower estimate in the previous theorem. Indeed, since

n(q−2)/2q Bn
2 ⊂ Bn

q , we have

np/q′ = np(q−2)/2qnp/2 � np(q−2)/2q Mp(Bn
2 , d2) = Mp(n

(q−2)/2q Bn
2 , d2) ≤ Mp(Bn

q , d2).

Since we have obtained the correct asymptotic estimate of Mp(Bn
q , d2) by using

Propositions 2.9 and 2.10, this says that the bounds of their statement cannot be

improved for arbitrary spaces.

Although we have not obtained the asymptotic behavior of Mp(Bn
q , d2) for the

remaining values of q, we do have certain bounds. Note that, for q > 2, we have the inclu-

sions Bn
2 ⊂ Bn

q ⊂ n1/2−1/q Bn
2 . Therefore, np/2 � Mp(Bn

q , d2) � np/q′
. It is interesting to mention

that this bounds are the same as the ones that can be obtained using Propositions 2.9

and 2.10.

From Theorems 2.11, 2.1 and Proposition 2.9, we can find a relationship between

Mp(K) and the expected value of a random width of K, for K the unit ball of �n
q or an

ellipsoid in R
n. Namely, suppose t ∈ Sn−1 is randomly chosen with uniform distribution

in the sphere. Then, for 0 < p< 2 and 1 < q ≤ 2 we have

Mp(Bn
q , d2) � np/2

E(Wt(Bn
q )p).

A similar result holds for ellipsoids. Moreover, in this case, the cited results and

(5) give us constants Ãp, B̃p > 0 with the following property. For every n∈ N and every

ellipsoid E ⊂ R
n with orthogonal axes and radii a1, . . . , an we have

Ãp

(
a2

1 + · · · + a2
n

n

)1/2

≤ E(Wt(E)p)1/p ≤ B̃p

(
a2

1 + · · · + a2
n

n

)1/2

.

2.4 Metric embeddings

Uniform, Lipschitz and coarse embeddings of metric spaces into Banach spaces with

“good geometrical properties” have found many significant applications, specially in
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16 D. Carando et al.

computer science and topology. The advantages of these embeddings are based on the

fact that for spaces with “good properties” one can apply several geometric tools which

are generally not available for typical metric spaces. The most significant accomplish-

ments throughout these lines were obtained in the area of approximation algorithms.

In this context, the spaces with “good geometrical properties” are mostly a separable

Hilbert space (or certain classical Banach spaces, such as �1).

One of the fundamental problems in metric geometry is the immersion problem,

that is, to determine conditions for which a metric space may be isometrically embedded

in a Hilbert space. It is well known that not every metric space (X, d) can be isometrically

embedded in a Hilbert space. Even if distortion is allowed, there are metric spaces that

cannot be embedded in a Hilbert space. The celebrated Assouad’s embedding theorem [6]

allows a bi-Lipschitz embedding if we change the metric a little bit. Let (X, d) be a

doubling metric space and take α ∈ (0, 1). Assouad’s theorem states that there exists N

such that the snowflaked metric space (X, dα) admits a bi-Lipschitz embedding into R
N

endowed with the Euclidean norm (i.e, in a N-dimensional Hilbert space). Recently, Naor

and Neiman [14] proved that the same dimension N = N(k) can be chosen for all α > 1
2

and all metric spaces with doubling constant at most k. Moreover, the distortion of all

the corresponding bi-Lipschitz embeddings is uniformly bounded.

We will concentrate our attention to isometric embeddings for certain

snowflaked metric spaces.

In the early 20th century, Wilson [28] investigated those metric spaces which

arise from a metric space by taking as its new metric a suitable (one variable) function

of the old one. For the metric space (R, d2), he considered the metric transform f(t) = t1/2

and showed that the snowflaked metric space (R, d1/2
2 ) can be isometrically embedded in

a separable Hilbert space. In other words, he showed the existence of a distance preserv-

ing mapping j : (R, d1/2
2 ) → (�2, ‖ · ‖�2). Some years later, Schoenberg and von-Neumann

[23] characterized those functions f for which the metric space (R, f(d2)) can be isomet-

rically embedded in a Hilbert space. As a particular case they proved that, for α ∈ (0, 1),

the function f(t) = tα is an appropriate metric transform, generalizing Wilson’s result.

Using transcendental means, Schoenberg obtained in [22] the same result for R
n. He

proved that, for 0 < α < 1, the metric space (Rn, dα
2 ) can also be embedded in �2.

In particular, for every compact set K ⊂ R
n and every 0 < α < 1, the snowflaked

metric space (K, dα
2 ) can be isometrically embedded in the surface of a Hilbert sphere

(see Theorem 2.12 for details). In other words, there exist a number R and a distance

preserving mapping

j : (K, dα
2 ) → (R · S�2 , ‖ · ‖�2). (14)
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Energy Integrals and Metric Embedding Theory 17

We now focus on finding (or estimating) the Schoenberg radius of (K, dα
2 ), that is, the

least possible R for which there exists a distance preserving mapping j as in (14).

Alexander and Stolarsky [5] connected the problem of estimating this radius with the

calculation of certain energy integrals. We state this relation in the following theorem.

Theorem 2.12. Let K ⊂ R
n be a convex body. For 0 < α < 1, the snowflaked metric space

(K, dα
2 ) may be isometrically embedded on the surface of a Hilbert sphere of radius√

M2α(K,d2)

2 . Moreover, this is the minimum possible radius. �

Actually, Alexander and Stolarsky proved this result for α = 1
2 , but their proof

works almost line by line for 0 < α < 1. Similar results can also be found in [17, Theo-

rems 3.1., 3.2., 4.6].

As a consequence of the last theorem and Corollary 2.2, we obtain the minimum

R for which the metric space (Bn
2 , dα

2 ) may be isometrically embedded on the surface of

a Hilbert sphere of radius R.

Theorem 2.13. For 0 < α < 1, the minimum R for which the metric space (Bn
2 , dα

2 ) may be

isometrically embedded on the surface of a Hilbert sphere of radius R is√
mpπ1/2Γ (α + n

2 )

2Γ (α + 1
2 )Γ (n

2 )
= nα/2

(√
mpπ1/2

2Γ (α + 1
2 )

+ o(1)

)
. �

On the other hand, combining Theorem 2.11 with Theorem 2.12 we can obtain

the asymptotical behavior of the Schoenberg radius for the metric space (Bn
q , dα

2 ).

Theorem 2.14. Let 1 < q ≤ 2 and 0 < α < 1, the minimum R for which the metric space

(Bn
q , dα

2 ) may be isometrically embedded on the surface of a Hilbert sphere of radius R

behaves asymptotically as nα/q′
, where 1

q + 1
q′ = 1. �
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