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Abstract. Brazitikos’ results on quantititative Helly-type theorems (for the

volume and for the diameter) rely on the work of Srivastava on approxi-

mate John’s decompositions with few vectors. We change this technique by
a stronger recent result due to Friedland and Youssef that allow us to obtain

Helly-type versions which are sensitive to the number of convex sets involved.

1. Introduction

Helly’s classical theorem states that if C = {Ci : i ∈ I} is a finite family of at least
n+ 1 convex sets in Rn and if any n+ 1 members of C have non-empty intersection
then

⋂
i∈I Ci is non-empty. In general, a Helly-type property is a property Π for

which there exists a number s ∈ N such that if {Ci : i ∈ I} is a finite family of
certain objects and every subfamily of s elements fulfills Π, then the whole family
fulfills Π.

In the eighties, Bárány, Katchalski and Pach proved the following quantitative
“volume version” of Helly’s theorem [BKP82, BKP84]:

Let C = {Ci : i ∈ I} be a finite family of convex sets in Rn. If the intersection
of any 2n or fewer members of H has volume greater than or equal to 1, then
vol(

⋂
i∈I Ci) ≥ c(n), where c(n) > 0 is a constant depending only on n.

Thus, the previous result express the fact that “the intersection has large volume”
is a Helly-type property for the family of convex sets.

Since every (closed) convex set is the intersection of a family of closed half-
spaces; a simple compactness argument (see [BKP82]) shows that one can remove
the restriction that C is finite and also assume that each convex set is a closed
half-space i.e.,

{x ∈ Rn : 〈x, vi〉 ≤ 1},
for some vector vi ∈ Rn. Therefore, the theorem of Bárány et. al. is equivalent to
the following statement:

Let H = {Hi : i ∈ I} be a family of closed half-spaces in Rn such that
vol(

⋂
i∈I Hi) = 1. There exist s ≤ 2n and i1, . . . , is ∈ I such that

vol(Hi1 ∩ · · · ∩His)
1/n ≤ c(n),

where c(n) > 0 is a constant depending only on n.
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⋂
i∈I

Hi

Hi1 ∩ · · · ∩His

Figure 1. A convex body defined as the intersection of half-spaces
which is enclosed by a convex set given by the intersection of a few
of them.

Of course one cannot replace 2n by 2n − 1 in the statement above. Indeed,
the cube [−1/2, 1/2]n in Rn can be written as the intersection of the 2n closed
half-spaces

H±j :=

{
x : 〈x,±1

2
ej〉 ≤ 1

}
and that the intersection of any 2n− 1 of these half-spaces has infinite volume.

The authors of [BKP82] gave the bound c(n) ≤ n2n for the constant c(n) and
conjectured that one might actually have polynomial growth i.e., c(n) ≤ nd for an
absolute constant d > 0. Naszódi [Nas16] has verified this conjecture; namely, he
proved that c(n) ≤ cn2, where c > 0 is an absolute constant. A clever but slight
refinement of Naszódi’s argument, due to Brazitikos [Bra17a, Theorem 3.1.], leads
to the exponent 3

2 instead of 2.
Moreover, Brazitikos showed in [Bra17a, Theorem 1.4.] that if we relax the

condition on the number s of half-spaces that we use (but still require that it is
proportional to the dimension n) one can improve significantly the estimate, giving
a bound of order n.

Theorem 1.1. [Bra17a, Theorem 1.4.] There exists an absolute constant α > 0
with the following property: for every family H = {Hi : i ∈ I} of closed half-spaces
in Rn,

Hi = {x ∈ Rn : 〈x, vi〉 ≤ 1},

with vol(
⋂
Hi∈IHi) = 1, there exist s ≤ αn and i1, . . . , is ∈ I such that

vol(Hi1 ∩ · · · ∩His)
1/n ≤ cn,

where c > 0 is an absolute constant.

Bárány, Katchalski and Pach also studied the question whether “the intersection
has large diameter” is a sort of Helly-type property for convex sets. They provided
the following quantitative answer to this question:
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Let {Ci : i ∈ I} be a family of closed convex sets in Rn such that diam
(⋂

i∈I Ci
)

=
1. There exist s 6 2n and i1, . . . , is ∈ I such that

diam (Ci1 ∩ · · · ∩ Cis) 6 (cn)n/2,

where c > 0 is an absolute constant.

In the same work the authors conjectured that the bound (cn)n/2 should be
polynomial in n. Leaving aside the requirement that s 6 2n, Brazitikos in [Bra17b]
provided the following relaxed positive answer:

Theorem 1.2. There exists an absolute constant α > 1 with the following property:
if {Ci : i ∈ I} is a finite family of convex bodies in Rn with diam

(⋂
i∈I Ci

)
= 1,

there exist s 6 αn and i1, . . . is ∈ I such that

diam(Ci1 ∩ · · · ∩ Cis) 6 cn3/2,

where c > 0 is an absolute constant.

It should be mentioned that when symmetry is assumed better bounds in both
problems can be obtained.

Brazitikos’ proofs of Theorem 1.1 and Theorem 1.2 rely on the work of Batson,
Spielman and Srivastava on approximate John’s decompositions with few vectors
[BSS12]. For Theorem 1.1, this is successfully combined with a new and very useful
estimate for corresponding ‘approximate’ Brascamp-Lieb-type inequality while, for
Theorem 1.2, the argument is based on a clever lemma of Barvinok from [Bar14].
This lemma in turn, exploits again the theorem of Batson et. al. or to be precise,
a more delicate version of Srivastava from [Sri12].

Of course if one is willing to further relax the number of convex sets involved in
the statements of Theorems 1.1 and 1.2, then one should expect to obtain better
bounds/estimates. The aim of this note is to present the following continuous
quantitative Helly-type results (i.e., Helly-type results which are sensitive to the
number of sets considered).

Theorem 1.3. (Continuous Helly-type theorem for the volume) Let 1 ≤ δ ≤ 2,
there is an absolute constant α > 1 with the following property: for every n ∈ N
and every family H = {Hi : i ∈ I} of closed half-spaces in Rn,

Hi = {x ∈ Rn : 〈x, vi〉 ≤ 1},

with vol(
⋂
i∈I Hi) = 1, there exists s ≤ αnδ and i1, . . . , is ∈ I such that

vol(Hi1 ∩ · · · ∩His)
1/n ≤ dnn

3
2−

δ
2 ,

where dn → 1 as n→∞.

Theorem 1.4. (Continuous Helly-type theorem for the diameter) Let 1 ≤ δ ≤ 2,
there is an absolute constant α > 1 with the following property: for every n ∈ N
and every finite family {Ci : i ∈ I} of convex bodies in Rn with diam

(⋂
i∈I Ci

)
= 1,

there exist s 6 αnδ and i1, . . . is ∈ I such that

diam(Ci1 ∩ · · · ∩ Cis) 6 cn3− 3
2 δ,

where c > 0 are absolute constant.
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Note that in both theorems we recover the previous mentioned results when
the number of sets is linear in n (i.e., when δ = 1). If the number of sets is n2

then the bounds are the known ones which, of course, follow by directly applying
John’s classical theorem. Therefore, the dependencies in the exponent of both
results obtained seem to be accurate. Moreover, for a linear number of spaces (i.e.,
δ = 1) the constant that appears in Theorem 1.3 is better than the one in [Bra17a,
Theorem 1.4.], since dn → 1 as n goes to infinity.

To obtain Theorems 1.3 and 1.4 we carefully follow Brazitikos’s proofs of Theo-
rems 1.1 and 1.2 but instead of using Batson et. al. or Srivastava’s statment on the
approximate John’s decomposition we replace it with the following stronger result
due to Friedland and Youssef (who exploited the recent solution of the Kadison-
Singer problem [MSS15], by showing that any n×m matrix A can be approximated
in operator norm by a submatrix with a number of columns of order the stable rank
of A).

Theorem 1.5. [FY19, Theorem 4.1] Let {uj , aj}1≤j≤m be a John’s decomposi-
tion of the identity i.e, the identity operator In is decomposed in the form In =∑m
j=1 ajuj ⊗uj. Then for any ε > 0 there exists a multi-set σ ⊂ [m] (i.e., it allows

repetitions of the elements) with |σ| ≤ n/cε2 so that

(1− ε)In �
n

|σ|
∑
j∈σ

(uj − u)⊗ (uj − u) � (1 + ε)In

where u = 1
|σ|
∑
i∈σ uj satisfies ‖u‖2 ≤ 2ε

3
√
n

, and c > 0 is an absolute constant.

In the words of Friedland and Youssef, Thorem 1.5 improves Srivastava’s theorem
[Sri12, Theorem 5] in three different ways. First the approximation ratio (1+ε)/(1−
ε) can be made arbitrary close to 1 (while in Srivastava’s result one could only get
a (4 + ε)-approximation). Secondly, it gives an explicit expression of the weights
appearing in the approximation. Finally, there is a big difference in the dependence
on ε in the estimate of the norm of u: Srivastava obtains a similar bound but with
ε replaced by

√
ε. This behaviour on ε will be crucial for our purposes allowing

us to obtain the bounds on our main results. With this at hand, we take the ε
parameter small but depending explicitly on n.

2. Notation and background

We refer to the book of Artstein-Avidan, Giannopoulos and V. Milman [AAGM15]
for basic facts from convexity and asymptotic geometry.

Recall that a convex body in Rn is a compact convex subset K of Rn with
non-empty interior. We say that the body K is symmetric if x ∈ K implies that
−x ∈ K. For any set X we write conv(X) for its convex hull. For convex body K
we write pK for the Minkowski’s functional of K, that is

pK(x) := inf{λ > 0 : x ∈ λK}.

If 0 ∈ int(K) then the polar body K◦ of K is given by

K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.
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Volume is denoted by vol(·) and diameter by diam(·). We consider in Rn the Eu-
clidean structure 〈·, ·〉 and denote by ‖ · ‖2 the corresponding Euclidean norm. We
write Bn2 and Sn−1 for the corresponding Euclidean unit ball and unit sphere re-
spectively.

We say that a convex body K is in John’s position if the ellipsoid of maximal
volume inscribed in K is the Euclidean unit ball Bn2 . John’s classical theorem states
that K is in John’s position if and only if Bn2 ⊆ K and there exist u1, . . . , um ∈
bd(K) ∩ Sn−1 (contact points of K and Bn2 ) and positive real numbers a1, . . . , am
such that

m∑
j=1

ajuj = 0

and the identity operator In is decomposed in the form

(1) In =

m∑
j=1

ajuj ⊗ uj ,

where the rank-one operator uj ⊗ uj is simply (uj ⊗ uj)(y) = 〈uj , y〉uj .
If u1, . . . , um are unit vectors that satisfy John’s decomposition (1) with some

positive weights aj . Then, one has the useful equalities

m∑
j=1

aj = tr(In) = n and

m∑
j=1

aj〈uj , z〉2 = 1

for all z ∈ Sn−1. Moreover,

(2) conv{v1, . . . , vm} ⊇
1

n
Bn2 .

The body K is in Löwner position if the minimal volume ellipsoid that contains
it is the Euclidean ball Bn2 . In that case, we also have a decomposition of the
identity as before.

Given two matrices A,B ∈ Rn×n we write A � B whenever B − A is positive
semidefinte.

The letters c, c′, C, C ′ etc. will always denote absolute positive constants which
may change from line to line.

3. Continuous Helly-type result for the volume: Theorem 1.3.

As mentioned above we follow the proof of [Bra17a, Theorem 1.4.]. We include
all the steps for completeness.

The following Brascamp-Lieb type inequality for approximate John’s decompo-
sition of the identity will be crucial.

Theorem 3.1. [Bra17a, Theorem 5.4] Let γ > 1. Let u1, · · · , us ∈ Sn−1 and
a1, · · · , as > 0 satisfy

Idn � A :=

s∑
j=1

ajuj ⊗ uj � γIdn
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and let kj = aj〈A−1uj , uj〉 > 0, 1 ≤ j ≤ s. If f1, · · · , fs : R −→ R+ integrable
functions then ∫

Rn

s∏
j=1

f
kj
j (〈x, uj〉) dx ≤ γ n2

s∏
j=1

∫
R

fj(t) dt

kj

.

We now prove Theorem 1.3.

Proof. (of Theorem 1.3)
Without loss of generality we assume that P :=

⋂
i∈I Hi is in John’s position.

Therefore there exist J ⊆ I and vectors (uj)j∈J which are contact points between
P and Sn−1 and (aj)j∈J positive numbers, such that

Idn =
∑
j∈J

ajuj ⊗ uj and
∑
j∈J

ajuj = 0.

Using Friedland and Youssef’s approximate decomposition, Theorem 1.5, we can
find a multi-set σ ⊆ J with |σ| ≤ n

cε2 and a vector u = −1
|σ|
∑
j∈σ uj such that

(1− ε)Idn �
n

|σ|
∑
j∈σ

(uj + u)⊗ (uj + u) � (1 + ε)Idn,

also satisfying that n
|σ|
∑
j∈σ uj + u = 0 and |u| ≤ 2ε

3
√
n

.

We consider the vector w := 3u
2
√
nε

. Recall that 1
nB

n
2 ⊆ conv{uj , j ∈ J}, thus

‖w‖2 ≤ 1
n and hence w ∈ conv{uj , j ∈ J}. By Carathéodory’s Theorem, we know

that there is τ ⊆ J , with |τ | ≤ n+ 1 and ρi > 0, i ∈ τ such that

w =
∑
i∈τ

ρiui and
∑
i∈τ

ρi = 1.

Also notice that, since u = −1
|σ|
∑
j∈σ uj and

∑
j∈σ

1
|σ| = 1, −u ∈ conv{uj , j ∈

σ}. Therefore, we have that the segment
[
−u, 3u

2
√
nε

]
is contained in conv{uj , j ∈

σ ∪ τ}. For j ∈ σ we define

vj :=

√
n

n+ 1

(
−uj ,

1√
n

)
and bj =

n+ 1

|σ|
.

Set v := −
√

n
n+1 (u, 0). So, we have

∑
j∈σ

bj(vj + v)⊗ (vj + v) =
∑
j∈σ

n

|σ|

(
−(uj + u),

1√
n

)
⊗
(
−(uj + u),

1√
n

)

=

(∑
j∈σ

n
|σ| (uj + u)⊗ (uj + u)

√
n
|σ|
∑
j∈σ (uj + u)

√
n
|σ|
∑
j∈σ (uj + u)t n

|σ|
∑
j∈σ

1
n

)

=

(∑
j∈σ

n
|σ| (uj + u)⊗ (uj + u) 0

0 1

)
,

which implies

(3) (1− ε)Idn+1 �
∑
j∈σ

bj(vj + v)⊗ (vj + v) � (1 + ε)Idn+1.
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The sum
∑
j∈σ bj(vj + v)⊗ (vj + v) can be written as

∑
j∈σ

bjvj ⊗ vj + v ⊗

∑
j∈σ

bjvj

+

∑
j∈σ

bjvj

⊗ v + (n+ 1)v ⊗ v,

and notice that since∑
j∈σ

bjvj =
∑
j∈σ

n+ 1

|σ|

√
n

n+ 1

(
−uj ,

1√
n

)

=

√
n+ 1

n

−∑
j∈σ

n

|σ|
uj ,

1

|σ|
∑
j∈σ

√
n


=

√
n+ 1

n

(
nu,
√
n
)
,

we obtain that∑
j∈σ

bjvj

⊗ v =

√
n+ 1

n

(
nu,
√
n
)
⊗
√

n

n+ 1
(−u, 0) =

(
−nu⊗ u 0

−
√
nut 0

)
,

v ⊗

∑
j∈σ

bjvj

 =

(
−nu⊗ u −

√
nu

0 0

)
,

and (n+ 1)v ⊗ v =

(
nu⊗ u 0

0 0

)
.

Hence, we can write Equation (3) as

(1− ε)Idn+1 − T �
∑
j∈σ

bjvj ⊗ vj � (1 + ε)Idn+1,

where T = v ⊗
(∑

j∈σ bjvj

)
+
(∑

j∈σ bjvj

)
⊗ v + (n + 1)v ⊗ v =

(
V z
z 0

)
, with

V = −nu⊗ u y z = −
√
nu. Now, for (x, t) ∈ Sn we have that

〈T (x, t), (x, t)〉 = 〈(V x+ zt, 〈z, x〉) , (x, t)〉
= 〈(V x, 0) , (x, t)〉+ 〈(zt, 〈z, x〉), (x, t)〉

≤ 〈V x, x〉+ |(zt, 〈z, x〉)||(t, x)| = 〈V x, x〉+
(
|zt|2 + 〈z, x〉2

) 1
2

≤ ‖V ‖|x|2 +
(
|z|2t2 + |z|2|x|2

) 1
2 ≤ ‖V ‖+ |z|

(
t2 + |x|2

) 1
2

= ‖V ‖+ |z||(x, t)| = ‖V ‖+ |z| = n|u|2 +
√
n|u|

≤ n4ε2

9n
+
√
n

2ε

3
√
n

=
4ε2

9
+

2ε

3

≤ ε,

for ε small enough (say ε ≤ 3
4 ). So, ‖T‖ ≤ ε, and hence Equation (3) implies that

(1− 2ε)Idn+1 � A :=
∑
j∈σ

bjvj ⊗ vj � (1 + 2ε)Idn+1,
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or equivalently

Idn+1 �
∑
j∈σ

bj
1− 2ε

vj ⊗ vj � γIdn+1,

with γ = 1+2ε
1−2ε . Applying Theorem 3.1, if fj : R → R+ are measurable functions,

then ∫
Rn+1

∏
j∈σ

f
kj
j (〈x, vj〉) dx ≤ γ

n+1
2

∏
j∈σ

∫
R

fj(t) dt

kj

,

where

kj =
bj

1− 2ε

〈(
1

1− 2ε
A

)−1

vj , vj

〉
= bj〈A−1vj , vj〉.

Since A−1 � 1
1−2εIdn+1, we have that

kj
bj
≤ 1

1−2ε . Now for j ∈ σ we consider

fj(t) := e
−bj
kj

t
χ[0,∞)(t). So,

∫
Rn+1

∏
j∈σ

f
kj
j (〈x, vj〉) dx ≤ γ

n+1
2

∏
j∈σ

∫
R

fj(t) dt

kj

= γ
n+1
2

∏
j∈σ

kj
bj

kj

≤ γ
n+1
2

1

(1− 2ε)
∑
j∈σ kj

= γ
n+1
2

1

(1− 2ε)n+1

=

(
1 + 2ε

(1− 2ε)3

)n+1
2

Set

Q =
⋂

i∈σ∪τ
Hi = {x ∈ Rn : 〈x, uj〉 < 1, j ∈ σ ∪ τ},

and let y = (x, r) ∈ Rn+1. Assume that r > 0 and x ∈ r√
n
Q. Then we have that

〈x, uj〉 < r√
n

for every j ∈ σ, which implies that 〈y, vj〉 > 0 for every j ∈ σ, and

then
∏
j∈σ

f
kj
j (〈y, vj〉) > 0. We also have that

〈
1

|σ|
∑
j∈σ

uj , x

〉
= 〈−u, x〉 =

2
√
nε

3
〈−w, x〉

=
2
√
nε

3

〈
−
∑
i∈τ

ρiui, x

〉
≥ −2

√
nε

3

(∑
i∈τ

ρi

)
r√
n

=
−2εr

3
.
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Thus, if y = (x, r) ∈ r√
n
Q× (0,∞), then

∏
j∈σ

f
kj
j (〈y, vj〉) = exp

−∑
j∈σ

bj

(
r√
n+ 1

−
√

n

n+ 1
〈x, uj〉

)
= exp

 −r√
n+ 1

∑
j∈σ

bj

 exp

√n√n+ 1

〈
x,

1

|σ|
∑
j∈σ

uj

〉
≥ e−r

√
n+1e−

√
n
√
n+1 2

3 rε = e−r
√
n+1(1+ 2

3 ε
√
n).

Now, by Theorem 3.1,

vol(Q)

n
n
2

∞∫
0

rne−r
√
n+1(1+ 2

3 ε
√
n) dr =

∞∫
0

∫
r√
n
Q

e−r
√
n+1(1+ 2

3 ε
√
n) dx dr

≤
∫

Rn+1

∏
j∈σ

f
kj
j (〈y, vj〉) dy

≤
(

1 + 2ε

(1− 2ε)3

)n+1
2

.

Using that Bn2 ⊆ P , and the fact that

∞∫
0

rne−r
√
n+1(1+ 2

3 ε
√
n) dr =

n!

(n+ 1)
n+1
2

(
1 + 2

3ε
√
n
)n+1 ,

we obtain, by taking 1 + ε′ = 1+2ε
(1−2ε)3 ,

vol
( ⋂
i∈σ∪τ

Hi

)
= vol(Q) ≤

(1 + ε′)
n+1
2 n

n
2 (n+ 1)

n+1
2

(
1 + 2

3ε
√
n
)n+1

n!

vol(P )

vol(Bn2 )

=
(1 + ε′)

n+1
2 n

n
2 (n+ 1)

n+1
2

(
1 + 2

3ε
√
n
)n+1

n!

Γ
(
n
2 + 1

)
vol(P )

π
n
2

.

By Stirling’s formula we get, for a constant C > 0, the inequality

vol(
⋂

i∈σ∪τ
Hi) ≤ C

(1 + ε′)
n+1
2 n

n
2 (n+ 1)

n+1
2

(
1 + 2

3ε
√
n
)n+1

π
n
2

√
2πn

(
n
e

)n n

2

√
4π

n

( n
2e

)n
2

vol(P )

= C(1 + ε′)
n+1
2

(
1 + 2

3ε
√
n
)n+1

nnn(n+ 1)
n+1
2

nnn

( e

2π

)n
2 1√

2
vol(P )

= C(1 + ε′)
n+1
2

(
1 +

2

3
ε
√
n

)n+1

(n+ 1)
n+1
2

( e

2π

)n
2 1√

2
vol(P ).

Fix ε := 1
4n

(1−δ)/2, using that 1 + ε′ = 1+2ε
(1−2ε)3 we have

(1 + ε′)

(
1 +

2

3
ε
√
n

)2
e

2π
= (1 + ε′)

(
1 +

1

6
n(2−δ)/2

)2
e

2π
< cn2−δ.
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Therefore,

vol(
⋂

i∈σ∪τ
Hi) ≤ Cn

n
2

(
1 +

1

n

)n
2 √

n+ 1 n(2−δ)/2 nn(2−δ)/2
√

2π√
2e

vol(P )

≤ C1

√
e(n+ 1)π

e
n
n
2 n(2−δ)/2 nn(2−δ)/2 vol(P )

=

C1

√
n+ 1n(2−δ)/2√π︸ ︷︷ ︸

Cn

nn(3−δ)/2 vol(P ).

We conclude that

vol(
⋂

i∈σ∪τ
Hi) ≤ Cn nn(3−δ)/2 vol(P ),

where the intersection is taken over at most |σ∪τ | ≤ n
cε2 +n+1 = nδ

c +n+1 ≤ αnδ

half-spaces. Since the constant Cn is of order n(3−δ)/2, we have that dn := C
1/n
n → 1

as n→∞.
It should be mentioned that the case δ = 2 is of course easier (we just use

John’s decomposition of the identity and the classical Brascamp-Lieb inequality
directly). �

4. Continuous Helly-type theorem for the diameter

To obtain Theorem 1.4 we prove the following proposition, which is a continuous
version of [Bra17b, Proposition 4.2.]. We feel it is interesting in its own right. Again
we include all the steps for completeness.

Proposition 4.1. Let 1 ≤ δ ≤ 2. If K is a convex body whose minimal volume
ellipsoid is the Euclidean unit ball, then there is a subset X ⊆ K∩Sn−1 of cardinality
card(X) ≤ αnδ and

K ⊆ Bn2 ⊆ Cn2− δ2 conv(X),

where α,C > 0 are absolute constant.

Proof. By John’s theorem there exist vj ∈ K ∩ Sn−1 and aj > 0, j ∈ J , such that

In =
∑
j∈J

ajvj ⊗ vj and
∑
j∈J

ajvj = 0.

Let ε > 0 small enough to be fixed later. By Theorem 1.5 we can find a multiset
σ ⊆ J of cardinal |σ| ≤ n

cε2 such that

(1− ε)In �
n

σ

∑
j∈σ

(vj + v)⊗ (vj + v) � (1 + ε)In,

where v = −1
|σ|
∑
j∈σ vj satisfies ‖v‖2 ≤ 2ε

3
√
n

.

Then, the vector w = 3v
2
√
nε

satisfies ‖w‖2 ≤ 1
n and therefore by Equation (2), it

belongs to conv{vj : j ∈ J}. By Carathéodory’s theorem there exist τ ⊆ J with
|τ | ≤ n+ 1 and ρi > 0, i ∈ τ such that

w =
∑
i∈τ

ρivi, and
∑
i∈τ

ρi = 1.
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Observe also that −v = 1
|σ|
∑
j∈σ vj is in conv{vj : j ∈ σ}. Let

T :=
n

|σ|
∑
j∈σ

vj ⊗ v +
n

|σ|
∑
j∈σ

v ⊗ vj + v ⊗ v.

As in the proof of Theorem 1.3 it is easy to see that |〈Tx, x〉| ≤ ε for every unit
vector x ∈ Rn (provided that ε is small enough). Thus

(1− 2ε)In � (1− ε)In − T �
n

|σ|
∑
j∈σ

vj ⊗ vj � (1 + ε)In − T � (1 + 2ε)In.

Define X := {vj : j ∈ σ∪τ} and E := conv(X). Let us show that Bn2 ⊆ cεn3/2E.
Indeed, let x ∈ Sn−1; set A := n

|σ|
∑
j∈σ vj ⊗ vj and ρ := min{〈x, vj〉 : j ∈ σ}.

Note that |ρ| ≤ 1 and 〈x, vj〉 − ρ ≤ 2 for all j ∈ σ.
If ρ < 0 we have

pE(Ax) ≤ pE

Ax− ρ n
|σ|
∑
j∈σ

vj

+ pE

ρ n
|σ|
∑
j∈σ

vj


= pE

∑
j∈σ

n

|σ|
(〈x, vj〉 − ρ)vj

+ pE(nρ(−v))

≤
∑
j∈σ

n

|σ|
(〈x, vj〉 − ρ)pE(vj)− nρpE(v)

≤ n
(

2 +
2
√
nε

3
pE(w)

)
≤ c1εn3/2,

where we are using that w ∈ K and therefore pE(w) ≤ 1.
On the other hand, if ρ ≥ 0, then 〈x, vj〉 ≥ 0 for all j ∈ σ, therefore

pE(Ax) = pE

 n

|σ|
∑
j∈σ
〈x, vj〉vj

 ≤ n

|σ|
∑
j∈σ
〈x, vj〉pE(vj) ≤ n.

This say that

pA−1(E)(x) ≤ c2εn3/2

for all x ∈ Sn−1, where c2 > 0 is an absolute constant.
Therefore we have

(1− 2ε)Bn2 ⊆ A(Bn2 ) ⊆ c2(1 + 2ε)εn3/2E.

Finally, fix ε := 1
4n

1
2−

δ
2 . Since K is in Löwner’s position

K ⊆ Bn2 ⊆ C2
1 + 2ε

1− 2ε
εn3/2 ⊆ Cn2− δ2 conv(X),

with |X| = |σ ∪ τ | ≤ cnδ + n+ 1 ≤ αnδ. �

Let us now see the proof of the Theorem 1.4.
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Proof. Consider P :=
⋂
i∈I Ci. Without loss of generality we can assume that

0 ∈ int(P ) and that the polar body

P ◦ = conv(
⋂
i∈I

C◦i )

is in Löwner’s position. Using Proposition 4.1 for the body K = P ◦, we know there
exists a set X = {v1, · · · , vs} ⊆ P ◦ ∩ Sn−1 such that |X| ≤ αnδ and

P ◦ ⊆ Cn2− δ2 conv(X),

where C > 0 is an absolute constant. Since v1, · · · , vs are contact points between
P ◦ and Bn2 , then we have that vj ∈

⋂
i∈I C

◦
i for all j = 1, · · · , s. This implies that

there exist s ≤ αnδ and bodies {Cij}, such that vj ∈ C◦ij for all j = 1 · · · , s. Then

conv(X) ⊆ conv(C◦i1 ∪ · · · ∪ C
◦
is

) and hence

P ◦ ⊆ Cn2− δ2 conv(C◦i1 ∪ · · · ∪ C
◦
is).

This shows that

Ci1 ∩ · · · ∩ Cis ⊆ cn2− δ2P,

and therefore we have the following estimate for the diameter

diam(Ci1 ∩ · · · ∩ Cis) ≤ cn2− δ2 .

This concludes the proof.
�

5. Final comments: symmetry assumption

It is well-known that if all the bodies are symmetric the bounds for these kind of
results are better (see, for example, [Bra17a, Theorem 1.2] and [Bra17b, Theorem
1.2.]). In that case, for a linear number of convex sets, the bounds are of order
n1/2. One should be tempted to think that relaxing the number of sets in these
statements provides again stronger estimates but, unfortunately, we cannot have
these type of continuous versions as before. Indeed, the exponent in n in cannot
be improved by allowing more sets: for example we can find w1, . . . , wN ∈ Sn−1

(assuming that N is exponential in the dimension n) such that

(4) Bn2 ⊆
N⋂
j=1

Hj ⊆ 2Bn2 ,

where Hj is defined as the strip

Hj = {x ∈ Rn : |〈x,wj〉| 6 1}.

Thus, if s = nδ with δ > 1, for any choice of j1, . . . , js ∈ {1, . . . , N} we can use the
classical lower bound for the volume due to Carl-Pajor [CP88] and Gluskin [Glu89],
which shows that

(5) |Hj1 ∩ · · · ∩Hjs |1/n >
C√

log(n)
.

Therefore, if Hj1 ∩· · ·∩Hjs ⊆ β
⋂N
j=1Hj for some β > 0, by comparing its volumes

we obtain that

(6) β >
|Hj1 ∩ · · · ∩Hjs |1/n

|2Bn2 |1/n
> c

√
n√

log n
,



CONTINUOS QUANTITATIVE HELLY-TYPE RESULTS 13

where c > 0 is an absolute constant.
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