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Abstract. Let K(B`np , B`nq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions

on Cn. That is, K(B`np , B`nq ) denotes the greatest number r ≥ 0 such that for every entire function

f(z) =
∑
α aαz

α in n-complex variables, we have the following (mixed) Bohr-type inequality

sup
z∈r·B`nq

∑
α

|aαzα| ≤ sup
z∈B`np

|f(z)|,

where B`nr denotes the closed unit ball of the n-dimensional sequence space `nr .

For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n

(the number of variables) goes to infinity.

1. Introduction

At the early twentieth century, during the course of his investigations on the famous Riemann

ζ function, Harald Bohr [Boh13, Boh14] devoted great efforts in the study and development of a

general theory of Dirichlet series. A Dirichlet series is just an expression of the form

D(s) =
∑
n≥1

an
ns
,

where an ∈ C and s = σ + it is a complex variable. The regions of convergence, absolute

convergence and uniform convergence of these series define half-planes of the form [Re(s) > σ0]

in the complex field. Bohr was mainly interested in controlling the region of convergence of a

series. To achieve this, he related different types of convergence and focused on finding the width

of the greatest strip for which a Dirichlet series can converge uniformly but not absolutely. This

question is popular and known nowadays as the Bohr’s absolute convergence problem.

Although the solution of this problem problem appeared two decades after it was proposed

(given by Bohnenblust and Hille [BH31, DSP+14] who showed that the maximum width of this
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strip is 1
2

), Bohr made major contributions in the area in order to tackle it (arguably, even

more important than the solution of the problem itself). He discovered a deep connection among

Dirichlet series and power series in infinitely many variables. Given a Dirichlet series D(s) =∑
n≥1

an
ns

, he considered for each n ∈ N the prime decomposition n = pα1
1 . . . pαrr (where (pk)k∈N

denote the sequence formed by the ordered primes) and defined z = (p−s1 , . . . , p−sr ). Thus,

D(s) =
∑
n≥1

an(p−s1 )α1 . . . (p−sr )αr =
∑

anz
α1
1 . . . zαrr .

This correspondence, known as the Bohr transform is not just formal: it gives an isometry

between suitable spaces of Dirichlet series and power series [HLS97]. The Bohr transform allows

to translate problems about Dirichlet series in terms of power series and tackle them with complex

analysis techniques. This cycle of ideas brought Bohr to ask whether is possible to compare the

absolute value of a power series in one complex variable with the sum of the absolute value of its

coefficients. He manged to prove the following result nowadays referred as Bohr’s inequality :

The radius r = 1
3
is the largest value for which the following inequality holds:

(1)
∑
n≥0

|an|rn ≤ sup
z∈D
|
∑
n≥0

anz
n|,

for every entire function f(z) =
∑

n≥0 anz
n on the unit disk D such that supz∈D |f(z)| <∞.

As a matter of fact, Bohr’s paper [Boh14], compiled by G. H. Hardy from correspondence,

indicates that Bohr initially obtained the radius 1
6
, but this was quickly improved to the sharp

result by M. Riesz, I. Schur, and N. Wiener, independently. Bohr’s article presents both his own

proof and the one of his colleagues.

This interesting inequality was overlooked during many years until the end of the twentieth

century. In particular, Dineen and Timoney [DT89], Dixon [Dix95], Boas and Khavinson [KB97],

Aizenberg [Aiz00], Boas [Boa00] and Bombieri and Bourgain [BB04] retook this work and use it in

different contexts and/or generalize it. Several of these authors analyzed if a similar phenomenon

occurs for power series in many variables. For each Reinhardt domain R, they introduced the

notion of the Bohr radius K(R) as the biggest r ≥ 0 such that for every analytic function

f(z) =
∑

α aαz
α bounded on R, it holds:

(2) sup
z∈r·R

∑
α

|aαzα| ≤ sup
z∈R
|f(z)|.
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Note that with this notation, Bohr’s inequality can be formulated simply as K(D) = 1
3
. Sur-

prisingly, the exact value of the Bohr radius is unknown for any other domain. The central results

of [KB97, Boa00] contained a (partial) successful estimate for the Bohr radius for the complex

unit balls of `np , 1 ≤ p ≤ ∞.

The gap between the upper and lower estimates in this papers leaded many efforts to compute

the exact asymptotic order of K(B`np ), for 1 ≤ p ≤ ∞.

To obtain the upper bounds Boas [Boa00] generalized in a very ingenious way a theorem of

Kahane-Salem-Zygmund on random trigonometric polynomials [Kah93, Theorem 4 in Chapter

6], which gives (by the use of a probabilistic argument) the existence of homogeneous polyno-

mials with “large coefficients” and uniform norm “relatively small”. This technique (and some

refinements of it, for example [DGM04, Bay12]) do the work when dealing with upper bounds.

The lower bound is a horse of a different color. In [DGM03] Defant, Garćıa and Maestre related

the Bohr radius with some non-elementary concepts of the local theory of Banach spaces: uncon-

ditionality in spaces of homogeneous polynomials via some Banach-Mazur distance estimates (see

also [DP06]). Although at that moment this did not give optimal asymptotic bounds, it started

a way with which K(B`np ) would be obtained.

They were Defant, Frerick, Ortega-Cerdá, Ounäıes and Seip [DFOC+11] who made an incredible

contribution in the problem and managed to exhibit the exact asymptotic value of K(B`n∞). The

authors involved again into the game the classical Bohnenblust-Hille inequality, which was used

to compute Bohr’s convergence width eighty years before. This inequality asserts that the ` 2m
m+1

-

norm of the coefficients of a given m-homogeneous polynomial in n-complex variables is bounded

by a constant independent of n times its supreme norm on the polydisk. Precisely, given m ∈ N.

there is a constant Cm > 0 such that for every m-homogeneous polynomial P (z) =
∑
|α|=m aαz

α

in Cn,

(3)

∑
|α|=m

|aα|
2m
m+1

m+1
2m

≤ Cm sup
z∈Dn
|P (z)|.

The groundbreaking progress consisted in showing that Cm is in fact hypercontractive; that

is, Cm can be taken less than or equal to Cm for some absolute constant C > 0. With this

at hand they proved that K(B`n∞) behaves asymptotically as
√

log(n)
n

(other cornerstone of the

paper is that they have also described the Sidon constant for the set of frequencies {log(n) :

n a positive integer ≤ N}). This paper, arguably in some sense, marked the path of the whole

area over the last years. In fact much more can be said about K(B`n∞): Bayart, Pellegrino and
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Seoane [BPSS14] managed to push these techniques further in an amazingly ingenious way to

obtain that limn→∞
K(B`n∞ )√

log(n)
n

= 1.

SinceK(B`n∞) bounds from below the radiusK(R) for any other Reinhardt domainR, the range

where p ≥ 2 easily follows. The solution of the case p < 2, required quite different methods. A

celebrated theorem proved independently by Pisier [Pis86] and Schütt [Sch78] allows to study

unconditional bases in spaces of multilinear forms in terms of some invariants such as the local

unconditional structure or the Gordon-Lewis property. These results have their counterpart in

the context of spaces of polynomials as shown in [DDGM01], replacing the full tensor product by

the symmetric one.

Defant and Frerick [DF11] (continuing their previous work given in [DF06]) established some

sort of extension of Pisier-Schütt result to the symmetric tensor product with accurate bounds

and gave a new estimate on the Gordon-Lewis constant of the symmetric tensor product. As a

byproduct, they found the exact asymptotic growth for the Bohr radius on the unit ball of the

spaces `np .

The aforementioned results give the following relation for the Bohr radius.

Theorem 1.1. [DFOC+11, DF11] For 1 ≤ p ≤ ∞, we have

(4) K(B`np ) ∼
(

log(n)

n

)1− 1
min{p,2}

.

The proof of the exact asymptotic behavior of K(B`np ) given in [DF11] for p < 2, as mentioned

before, use “sophisticated machinery” from the Banach space theory. Inspired by recent results

from the general theory of Dirichlet series, in [BDS16] Bayart, Defant and Schlüters managed to

give upper estimates for the unconditional basis constants of spaces of polynomials on `p spanned

by finite sets of monomials, which avoid the use of this “machinery”. This perspective gives a

new and, in a sense, clear proof of Theorem 1.1 for the case p < 2.

The study of the Bohr radius together with the techniques developed for this purpose have been

enriching many mathematical areas such us number theory [CDG+15, DFOC+11, BB04], com-

plex analysis [BDF+17, BDS16, DMP09], operator algebras [PPS02, Dix95], random polynomials

[Boa00] (together with several works influenced by this article such as [DGM04, Bay12, GMSP97]),

the study of functions on the boolean cube [DMP17a, DMP17b] (which are fundamental in the-

oretical computer science, graph theory, social choice, etc.) and even in quantum information

[DMP17b, Mon12].

Our aim is to continue the study of the Bohr phenomenon for mixed Reinhardt domains. Let

R and S be two Reinhardt domain in Cn. The mixed Bohr radius K(R,S) is defined as the
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(I) ∼ 1

(II) ∼
√

log(n)

n
1
2+ 1

p−
1
q

(III) ∼ log(n)
1− 1

p

n
1− 1

q

1
2

1
2

1
p

1
q

Figure 1. Graphical overview of the mixed Bohr radius described in Theorem 1.2.

biggest number r ≥ 0 such that for every analytic function f(z) =
∑

α aαz
α bounded on R, it

holds:

(5) sup
z∈r·S

∑
α

|aαzα| ≤ sup
z∈R
|f(z)|.

We will focus in the case where R and S are the closed unit balls of `p and `q for 1 ≤ p, q ≤ ∞.

Note that K(B`np ) in the previous notation is just K(B`np , B`np ). Our contribution is the following

theorem which provides the correct asymptotic estimates for the full range of p’s and q’s.

Theorem 1.2. Let 1 ≤ p, q ≤ ∞, with q 6= 1. The asymptotic growth of the (p, q)-Bohr radius is

given by

K(B`np , B`nq ) ∼


1 if (I): 2 ≤ p ≤ ∞ ∧ 1

2
+ 1

p
≤ 1

q
,√

log(n)

n
1
2+ 1

p−
1
q

if (II): 2 ≤ p ≤ ∞ ∧ 1
2

+ 1
p
> 1

q
,

log(n)
1− 1

p

n
1− 1

q
if (III): 1 ≤ p, q ≤ 2.

For q = 1 and every 1 ≤ p ≤ ∞, K(B`np , B`nq ) ∼ 1.

As for K(B`np ), the upper bound are obtained using random polynomials with adequate coeffi-

cients and relatively small norm [Boa00, DGM04, Bay12]. To obtain the lower bounds the proof
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is divided in several cases. For p < 2 we have combined an appropriate way to divide and distin-

guish certain subsets of monomials together with the upper estimates for the unconditional basis

constants of spaces of polynomials on `p spanned by finite sets of monomials given in [BDS16].

The interplay between monomial convergence and mixed unconditionality for spaces of homoge-

neous polynomials presented in [DMP09, Theorem 5.1.] (which, of course, gives information on

the Bohr radius) is crucial for the case p > 2. We have strongly used some recent inclusion for

the set of monomial convergence domH∞(B`p) p ≥ 2 given in [DMP09, BDF+17]. Therefore, it

is worth noting that the techniques and results developed in the last years were fundamental for

our proof.

The article is organized as follows. In Section 2 we present some basic background and results

that we will use to prove Theorem 1.2. We also give in this section some of the notation and

concepts that appeared in this introduction. In Sections 3 and 4 we show the upper and lower

estimates for the theorem respectively.

2. Preliminaries

We write by D the closed unit disk in the complex plane C. As usual we denote `np for the

Banach space of all n-tuples z = (z1, . . . , zn) ∈ Cn endowed with the norm ‖(z1, . . . , zn)‖p =(∑n
i=1 |zi|p

)1/p

if 1 ≤ p < ∞, and ‖(z1, . . . , zn)‖∞ = maxi=1,...,n |zi| for p = ∞. The unit ball of

`np is denoted by B`np . For 1 ≤ p ≤ ∞ we write p′ for its conjugate exponent (i.e., 1
p

+ 1
p′

= 1).

For every x, y ∈ CN we denote |x| = (|x1|, . . . , |xn|, . . .), and |x| ≤ |y| will mean that |xi| ≤ |yi|
for every i ∈ N. Recall that a Banach sequence space is a Banach space (X, ‖ ·‖X) with `1 ⊂ X ⊂
`∞; and such that whenever y ∈ X, x ∈ CN and |x| ≤ |y| it follows x ∈ X and ‖x‖X ≤ ‖y‖X .

A non-empty open set R ⊂ X is called a Reinhardt domain whenever given x ∈ CN and y ∈ R
such that |x| ≤ |y| then it holds x ∈ R.

Given a Banach sequence space X and fixed n ∈ N its n-th projection Xn is defined as the

quotient space induced by the mapping

πn : X → Cn

x 7→ (x1, . . . , xn).

An m-homogeneous polynomial in n variables is a function P : Cn → C of the form

P (z1, . . . , zn) =
∑

α∈Λ(m,n)

aαz
α,
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where Λ(m,n) := {α ∈ Nn
0 : |α| := α1 + · · ·+ αn = m}, zα := zα1

1 · · · zαnn and aα ∈ C. We will use

the notation aα =: aα(P ).

Another way of writing a polynomial P is as follows:

P (z1, . . . , zn) =
∑

j∈J (m,n)

cjzj,

where J (m,n) := {j = (j1, . . . , jm) : 1 ≤ j1 ≤ . . . ≤ jm ≤ n}, zj := zj1 · · · zjm and cj ∈ C.

Note that cj = aα with j = (1, α1. . ., 1, . . . , n, αn. . ., n). For some fixed j ∈ J (m,n) and some i =

(i1, . . . , im) ∈ Nm we say i ∈ [j] if the exists some permutation σ ∈ Sm such that (iσ(1), . . . , iσ(m)) =

j and |j| will denote the number of elements in [j]. Observe that |j| = m!
α!

if the index j is

(1, α1. . ., 1, . . . , n, αn. . ., n).

The elements (zα)α∈Λ(m,n) (equivalently, (zj)j∈J (m,n)) are commonly refereed as the monomials.

Following the notation of [BDS16], given a subset J ⊂ J (m,n), we call

J ∗ = {j ∈ J (m− 1, n) : there is k ≥ 1, (j, k) ∈ J }.

For 1 ≤ p ≤ ∞ we denote by P(m`np ) the Banach space of all m-homogeneous polynomials in

n complex variables equipped with the uniform (or sup) norm

‖P‖P(m`np ) := sup
z∈B`np

∣∣P (z)
∣∣.

Given two Banach sequence spaces X and Y , for n,m ∈ N let χM(P(mXn),P(mYn)) be the

best constant λ > 0 such that

sup
z∈BYn

∣∣∣∣∣∣
∑

α∈Λ(m,n)

θαaαz
α

∣∣∣∣∣∣ ≤ λ sup
z∈BXn

∣∣∣∣∣∣
∑

α∈Λ(m,n)

aαz
α

∣∣∣∣∣∣ ,
for every (aα)α∈Λ(m,n) ⊂ C and every choice of complex numbers (θα)α∈Λ(m,n) of modulus one.

When X = `p and Y = `q we will denote χM(P(mXn),P(mYn)), the (p, q)-mixed uncondition-

ally constant for the monomial basis of P(mCn), as χM(P(m`np ),P(m`nq )). It should be mentioned

that, for any fixed m ∈ N, the asymptotic growth of χM(P(m`np ),P(m`nq )) as n→∞ was studied

in [GMM16].

Every entire function f : Cn → C can be written as

f =
∑
m≥0

∑
α∈Λ(m,n)

aα(f)zα.

Recall that K(B`np , B`nq ) stands for the n-dimensional (p, q)-Bohr radius. That is, K(B`np , B`nq )

denotes the greatest constant r > 0 such that for every entire function f =
∑

α aαz
α in n-complex
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variables, we have the following (mixed) Bohr-type inequality

sup
z∈r·B`nq

∑
α

|aαzα| ≤ sup
z∈B`np

|f(z)|.

In the same way, the m-homogeneous mixed Bohr radius, Km(B`np , B`nq ), is defined as the

greatest r > 0 such that for every P (z) =
∑

α∈Λ(m,n) aαz
α ∈ P(mCn) it follows

sup
z∈B`nq

∑
α∈Λ(m,n)

|aαzα|rm = sup
z∈r·B`nq

∑
α∈Λ(m,n)

|aαzα| ≤ ‖P‖P(m`np ).

It is plain that K(B`np , B`nq ) ≤ Km(B`np , B`nq ).

Remark 2.1.

Km(B`np , B`nq ) =
1

χM(P(m`np ),P(m`nq ))1/m
.

Proof. Given P ∈ P(mCn) and for any (θα)α∈Λ(m,n) we have

‖
∑

α∈Λ(m,n)

θαaα(P )zα‖P(m`nq ) ≤ ‖
∑

α∈Λ(m,n)

|aα(P )zα|‖P(m`nq )

= ‖
∑

α∈Λ(m,n)

|aα(P )zα|(Km(B`np , B`nq ))m‖P(m`nq )
1

(Km(B`np , B`nq ))m

≤ 1

(Km(B`np , B`nq ))m
‖P‖P(m`np ),

which leads to the inequality χM(P(m`np ),P(m`nq ))1/m ≤ 1
Km(B`np ,B`nq )

. On the other hand, for

P ∈ P(mCn) take θα = aα(P )
|aα(P )| . Then we have

‖
∑

α∈Λ(m,n)

|aα(P )zα|‖P(m`nq ) = ‖
∑

α∈Λ(m,n)

θαaα(P )zα‖P(m`nq )

≤ χM(P(m`np ),P(m`nq ))‖P‖P(m`np ),

or equivalently,

sup
z∈B`nq

∑
α∈Λ(m,n)

|aαzα|
(

1

χM(P(m`np ),P(m`nq ))1/m

)m
≤ ‖P‖P(mCn),

which means 1
χM (P(m`np ),P(m`nq ))1/m

≤ Km(B`np , B`nq ). �

It will be useful to remember a classic result due to F. Wiener (see [KB97]) which asserts

that for every holomorphic function f written as the sum of m-homogeneous polynomials as

f =
∑
m≥1

Pm + a0 and such that supz∈B`np
|f(z)| ≤ 1 it holds

(6) ‖Pm‖P(m`np ) ≤ 1− |a0|2,
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for every m ∈ N.

In general this inequality is presented for the uniform norm on the polydisk ‖ · ‖P(m`n∞) (i.e.,

p =∞), but this version easily follows by a standard modification of the original argument (given

z ∈ B`np consider the auxiliary function g : Cn → C given by g(w) := f(w · z)).

The next lemma is an adaption of the case p = q, see [DGM03, Theorem 2.2.] and constitutes

the basic link between Bohr radius and unconditional basis constants of spaces of polynomials on

the mixed context (p not necessarily equal to q).

Lemma 2.2. For every n ∈ N and 1 ≤ p, q ≤ ∞ it holds

1

3

1

supm≥1 χM(P(m`np ),P(m`nq ))1/m
≤ K(B`np , B`nq ) ≤ min

{
1

3
,

1

supm≥1 χM(P(m`np ),P(m`nq ))1/m

}
.

Proof. Form Remark 2.1 we haveK(B`np , B`nq ) ≤ infm≥1
1

χM (P(m`np ),P(m`nq ))1/m
= 1

supm≥1 χM (P(m`np ),P(m`nq ))1/m

and due to Bohr’s inequality we know K(D) = 1
3

as it is clear that K(B`np , B`nq ) ≤ K(D) for every

n ∈ N the right hand side inequality holds. For the left hand side inequality let us take some holo-

morphic function f , without loss of generality let us assume supz∈B`np
|f(z)| = 1, and consider its

decomposition as a sum of m-homogeneous polynomials f =
∑
m≥0

Pm. For every m ∈ N0 it holds

Pm(z) =
∑

α∈Λ(m,n)

aα(f)zα, thus taking ρ = supm≥1 χM(P(m`np ),P(m`nq ))1/m and using Remark 2.1

again it follows ∥∥∥ ∑
α∈Λ(m,n)

|aα(f)|
(
z

ρ

)α ∥∥∥
P(m`nq )

≤
∥∥∥ ∑
α∈Λ(m,n)

aα(f)zα
∥∥∥
P(m`np )

.

Applying the above mentioned Wiener’s result for some w ∈ B`nq we have that

∑
m≥0

∑
α∈Λ(m,n)

|aα(f)|
(
w

3ρ

)α
≤ |a0(f)|+

∑
m≥1

1

3m

∥∥∥ ∑
α∈Λ(m,n)

aα(f)zα
∥∥∥
P(m`np )

≤ |a0(f)|+
∑
m≥1

1

3m
(1− |a0(f)|2)

≤ |a0(f)|+ 1− |a0(f)|2

2

≤ 1 = sup
z∈B`np

|f(z)|,

where last inequality holds as |a0(f)| ≤ supz∈B`np
|f(z)| = 1. The last chain of inequalities and

the maximality of mixed Bohr radius lead us to 1
3ρ
≤ K(B`np , B`nq ) as we wanted to prove. �



10 DANIEL GALICER, MARTÍN MANSILLA, AND SANTIAGO MURO
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(II)
(III)

(III ′)

1
2

1
2

2m−1
2m

m−1
2m

1
p

1
q

Figure 2. Graphical overview of the mixed unconditional constant described in Theorem 2.3.

The previous lemma shows that understanding K(B`np , B`nq ) translates into seeing how the con-

stant χM(P(m`np ),P(m`nq ))1/m behaves. Unfortunately, the results on the asymptotic growth of the

(mixed) unconditional constant χM(P(m`np ),P(m`nq )) (for fixed m) as n→∞ from [GMM16] are

not useful here. As can be seen in Lemma 2.2, one needs to comprehend how χM(P(m`np ),P(m`nq ))1/m

grows by moving both the number of variables, n, and the degree of homogeneity, m. But beyond

this, they give a guideline of what to expect (at least what the different regions in Figure 1 should

look like). Indeed, in [GMM16] we have proved the following

Theorem 2.3.

χp,q(P(mCn)) ∼ 1 for (I) : [1
p

+ m−1
2m
≤ 1

q
∧ 1

p
≤ 1

2
] or [m−1

m
+ 1

mp
< 1

q
∧ 1

2
≤ 1

p
],

χp,q(P(mCn)) ∼ nm( 1
2

+ 1
p
− 1
q

)− 1
2 for (II) [1

p
+ m−1

2m
≥ 1

q
∧ 1

p
≤ 1

2
],

χp,q(P(mCn)) ∼ n(m−1)(1− 1
q

)+ 1
p
− 1
q for (III) : [1

p
≥ 1

q
∧ 1

2
≤ 1

p
],

χp,q(P(mCn)) ∼ε n(m−1)(1− 1
q

)+ 1
p
− 1
q for (III ′) : [1− 1

m
+ 1

mp
≥ 1

q
≥ 1

p
∧ 1

2
< 1

p
< 1].

where χp,q(P(mCn)) ∼ε n(m−1)(1− 1
q

)+ 1
p
− 1
q means that

n(m−1)(1− 1
q

)+ 1
p
− 1
q � χp,q(P(mCn))� n(m−1)(1− 1

q
)+ 1

p
− 1
q

+ε,

for every ε > 0.

The heuristic to interpret the different regions in Theorem 1.2 is the following: If one thinks

that the correct order of the region (III ′) coincides with that of (III) in Theorem 2.3 (in fact,
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this is what we believe) and assumes that the homogeneity degree is very very large (m → ∞)

then the graph in Figure 2 transforms into the one presented in Figure 1. All this, together with

the upper bounds that one gets after using classical random polynomials (see Section 3, somehow

the easy part) helped us to define where to aim to prove lower bounds. We highlight that, the

logarithmic factors that appear in Theorem 1.2, are missing in Theorem 2.3. This is, somehow,

not coincidental and their presence is due to the interplay between the number of variables and

the degree of homogeneity in Lemma 2.2.

We continue with some definitions that will be useful later. Given X a Banach sequence space

we denote H∞(BX) to the space of holomorphic functions over BX endowed with the norm given

by ‖f‖H∞(BX) := sup
z∈BX

|f(z)|. The domain of monomial convergence of H∞(BX) is defined as

domH∞(BX) :=
{
z ∈ `∞ :

∑
m≥0

∑
α∈Λ(m,n)

|aα(f)zα| <∞ for every f ∈ H∞(BX)
}
.

The next theorem appears in [DMP09, Theorem 5.1] and relates monomial convergence with

the study of the mixed unconditional constant of the monomial basis.

Theorem 2.4. For a couple of Banach sequence spaces X, Y the following are equivalent:

(1) rBY ⊂ domH∞(BX) for some r > 0.

(2) There exists a constant C > 0 independent of m such that

sup
n≥1

χM(P(mXn),P(mYn)) ≤ Cm.

If (an)n and (bn)n are two sequences of real numbers we will write an � bn if there exists a

constant C > 0 (independent of n) such that an ≤ Cbn for every n. We will write an ∼ bn if

an � bn and bn � an. We will use repeatedly the Stirling formula which asserts

(7) n! ∼
√

2πn
(n
e

)n
.

We use the letters C,C1, C2, etc. to denote certain constants which do not depend on n (the

number of variables) nor m (the homogeneity degree). These may depend on the parameters p

and/or q and from one inequality to the other may vary (and will be denoted in the same way).

3. Upper bounds

Upper bounds constitute the easy part: we will use the classical probabilistic approach. Bayart

in [Bay12, Corollary 3.2] (see also [Boa00, DGM03, DGM04]) exhibited polynomials with small
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sup-norm on the unit ball of `np . He showed that for each 1 ≤ p ≤ ∞ there exists an m-

homogeneous polynomial in n complex variables, P (z) :=
∑

α∈Λ(m,n) εα
m!
α!
zα, with εα = ±1 for

every α, such that ‖P‖P(m`np ) ≤ Dp(m,n) where

(8) Dp(m,n) := Cp ×

(log(m)m!)1− 1
p n1− 1

p if 1 ≤ p ≤ 2,

(log(m)m!)
1
2nm( 1

2
− 1
p

)+ 1
2 if 2 ≤ p ≤ ∞,

and Cp depends exclusively on p.

We will also need the following remark which is an easy calculus exercise.

Remark 3.1. For every positive numbers a, b > 0 and n ∈ N, the function f : R>0 → R given

by f(x) = xan
b
x attains its minimum at x = log(n) b

a
.

Proof of the upper bounds of Theorem 1.2. Upper bounds for the case 1
p

+ 1
2
≤ 1

q
and q = 1 in

Theorem 1.2 are trivial.

Suppose now 1
p

+ 1
2
> 1

q
and let (εα)α∈Λ(m,n) ⊂ {−1, 1} signs such that∥∥∥ ∑

α∈Λ(m,n)

εα
m!

α!
zα
∥∥∥
B`np

≤ Dp(m,n),

as (8). Taking z0 = ( 1
n1/q , . . . ,

1
n1/q ) ∈ B`q we can conclude that

nm(1− 1
q

) =
∑

α∈Λ(m,n)

m!

α!

(
1

n
1
q

)m
≤
∥∥∥ ∑
α∈Λ(m,n)

|εα|
m!

α!
zα
∥∥∥
B`nq

≤ χM(P(m`np ),P(m`nq ))
∥∥∥ ∑
α∈Λ(m,n)

εα
m!

α!
zα
∥∥∥
B`np

≤ χM(P(m`np ),P(m`nq )) ·Dp(m,n).

We have by Stirling formula (7) and for p < 2,

1

χM(P(m`np ),P(m`nq ))1/m
≤
(
Cn

1
p′ (log(m)m!)

1
p′
)1/m 1

n
1
q′

≤ C
1

n
1
q′
m

1
p′ n

1
p′m .

Thanks to Lemma 2.1, Remark 3.1 and the previous inequality

K(B`np , B`nq ) ≤ C
1

n
1
q′

inf
m≥1

m
1
p′ n

1
p′m ≤ C

log(n)
1
p′

n
1
q′

.
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On the other hand, for p ≥ 2 and 1
p

+ 1
2
> 1

q
it follows

1

χM(P(m`np ),P(m`nq )))1/m
≤
(
Cn

1
2 (log(m)m!)

1
2

)1/m 1

n
1
2

+ 1
p
− 1
q

≤ C
1

n
1
2

+ 1
p
− 1
q

m
1
2n

1
2m .

Thus minimizing m
1
2n

1
2m as in the previous case we get,

K(B`np , B`nq ) ≤ C

√
log(n)

n
1
2

+ 1
p
− 1
q

,

as we wanted to prove. �

4. Lower bounds

For the proof of the lower bounds we need to consider four different cases. We begin with the

case q = 1 and the case p ≤ q, which are the easy ones. Then we study the case 1 < q ≤ p ≤ 2

where we use tools from unconditionality and finally the case p ≥ 2 where the key tool is monomial

convergence.

4.1. The case q = 1. By [Aiz00], K(B`n1
) ∼ 1. Thus, for any f(z) =

∑
α aαz

α, it follows that

sup
z∈K(B`n1

)·B`n1

∑
α

|aαzα| ≤ sup
z∈B`n1

|f(z)| ≤ sup
z∈B`np

|f(z)|,

which implies that K(B`np , B`n1
) ≥ K(B`n1

) ∼ 1.

4.2. The case p ≤ q. For this case we will strongly use Theorem 1.1. The case p ≤ q is an easy

corollary of this result. For any P (z) =
∑

α∈Λ(m,n)

aαz
α, it follows that

∥∥∥ ∑
α∈Λ(m,n)

|aα|zα
∥∥∥
P(m`nq )

≤ nm( 1
p
− 1
q

)
∥∥∥ ∑
α∈Λ(m,n)

|aα|zα
∥∥∥
P(m`np )

≤ nm( 1
p
− 1
q

)K(B`np )−m
∥∥∥ ∑
α∈Λ(m,n)

aαz
α
∥∥∥
P(m`np )

,

which implies that Km(B`np , B`nq ) ≥ K(B`np )n
1
q
− 1
p for every m ∈ N. Using Lemma 2.2 and Theo-

rem 1.1 we have, for p ≤ 2,

K(B`np , B`nq ) ≥ 1

3
n

1
q
− 1
pK(B`np ) ∼ n

1
q
− 1
p

(
log(n)

n

)1− 1
p

=
log(n)1−1/p

n1−1/q
,

and, for p ≥ 2,

K(B`np , B`nq ) ≥ 1

3
n

1
q
− 1
pK(B`np ) ∼ n

1
q
− 1
p

(
log(n)

n

)1− 1
2

=

√
log(n)

n
1
2

+ 1
p
− 1
q

.
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This concludes the proof.

4.3. The case 1 < q < p ≤ 2. The following lemma is a key tool for the results of this section.

It provides `p′-summability of certain coefficients of a given polynomial in terms of its uniform

norm on `np .

Lemma 4.1. [BDS16, Lemma 3.5.] Let 1 ≤ p ≤ ∞ and P be an m-homogeneous polynomial in

n variables. Then for any j ∈ J (m− 1, n)

 n∑
k=jm−1

|c(j,k)(P )|p′
1/p′

≤ me1+m−1
p |j|1/p‖P‖P(m`np ).

The next lemma is an adaptation of the case r ≤ 2 in [BDS16, Theorem 3.2] to the mixed

context for our purposes.

Lemma 4.2. Let 1 ≤ q < p ≤ 2. Then we have

χM(P(m`np ),P(m`nq )) ≤ me1+m−1
p

 ∑
j∈J (m−1,n)

|j|(1/p−1/q)q′

1/q′

.

Proof. Fix P ∈ P(m`np ) and u ∈ `nq . Then, by Lemma 4.1, for any j ∈ J (m,n)∗,

 ∑
k: (j,k)∈J (m,n)

|c(j,k)(P )|p′
1/p′

=

 n∑
k=jm−1

|c(j,k)(P )|p′
1/p′

≤ me1+m−1
p |j|1/p‖P‖P(m`np ).
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Now applying the above inequality, Hölder’s inequality (two times) and the multinomial formula

we have

∑
j∈J (m,n)

|cj(P )||uj| =
∑

j∈J (m,n)∗

 ∑
k: (j,k)∈J (m,n)

|c(j,k)||uj||uk|


≤

∑
j∈J (m,n)∗

|uj|

 ∑
k: (j,k)∈J (m,n)

|c(j,k)|q
′

1/q′ (∑
k

|uk|q
)1/q

≤
∑

j∈J (m,n)∗

|uj|

 ∑
k: (j,k)∈J (m,n)

|c(j,k)|p
′

1/p′

‖u‖q

≤ me1+m−1
p

∑
j∈J (m,n)∗

|j|1/p|uj|‖u‖q‖P‖P(m`np )

≤ me1+m−1
p

 ∑
j∈J (m,n)∗

|j||uj|q
1/q ∑

j∈J (m,n)∗

|j|(1/p−1/q)q′

1/q′

‖u‖q‖P‖P(m`np )

≤ me1+m−1
p

 ∑
j∈J (m−1,n)

|j||uj|q
1/q ∑

j∈J (m−1,n)

|j|(1/p−1/q)q′

1/q′

‖u‖q‖P‖P(m`np )

= me1+m−1
p

 ∑
j∈J (m−1,n)

|j|(1/p−1/q)q′

1/q′

‖u‖mq ‖P‖P(m`np ),

which gives the desired inequality. �

The key to prove the lower bound is to obtain good bounds for the sum on the right hand side

of the previous lemma.

Lemma 4.3. Let 1 < q ≤ p ≤ 2, for large enough n it follows

 ∑
j∈J (m−1,n)

|j|(1/p−1/q)q′

1/q′

≤ Cm nm/q
′

log(n)m/p′
,

for every m ∈ N.

With this at hand it is easy to prove the remaining lower bounds of the case p ≤ 2 of the main

theorem.
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Proof of the lower bound of the case 1 < q < p ≤ 2 on Theorem 1.2. Thanks to Lemma 2.2 it is

enough to prove that

(9)
log(n)1−1/p

n1−1/q
� 1

supm≥1 χM(P(m`np ),P(m`nq ))1/m
= inf

m≥1

1

χM(P(m`np ),P(m`nq ))1/m
,

which follows by Lemma 4.2 and Lemma 4.3. �

The proof of Lemma 4.3 will require some hard work. We define for any 1 ≤ k ≤ m the

k-bounded index set as

Λk(m,n) = {α ∈ Λ(m,n) : αi ≤ k for all 1 ≤ i ≤ n}.

Let F be the bijective mapping connecting Λ(m,n) and J (m,n) defined as

F : J (m,n) → Λ(m,n)

j 7→ α

where αi = F (j)i = #{k : jk = i} for every 1 ≤ i ≤ n. We denote

Jk(m,n) = F−1(Λk(m,n)),

for the corresponding k-bounded index set seen in J (m,n). Observe that for any 1 ≤ k ≤ m and

j ∈ Jk(m,n) the following inequalities hold:

(10) |j| ≥ m!

k!d
m
k
e ≥

m!

k!
m
k

+1
≥ Cm mm

km+k
,

(11) ∑
j∈J (m−1,n)

|j|(1/p−1/q)q′

1/q′

≤ m1/q′ max
k=1,...,m−1

{ ∑
j∈Jk(m−1,n)∩J ck−1(m−1,n)

|j|(1/p−1/q)q′

1/q′ }
.

Finally,

|J c
k−1(m− 1, n)| ≤ n|J (m− k − 1, n)|(12)

≤ n

(
n+m− k − 2

m− k − 1

)
≤ n

(n+m− k − 2)m−k−1

(m− k − 1)!
,

since j ∈ J c
k−1(m− 1, n) requires that at least one of the variables is at the power of k (note that

this bound is excessive, given that there are many repetitions at the time of counting, but it will

be adequate for our purposes). For the particular case m ≤ n we can extract from inequality (12)

the fact that

(13) |J c
k−1(m− 1, n)| ≤ 2m

nm−k

(m− k − 1)!
.

We are now ready to prove Lemma 4.3.
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Proof of Lemma 4.3. Suppose that n is large enough in order to have

(14) log(n)c ≤ n,

where c > 0 is a constant that will be specified later.

We will split the proof in two cases.

• (i) m ≤ log(n)
q′
p′ .

Note that if we take in (14) c ≥ q′

p′
, then m ≤ n. Thus, by (10) and (13), we have, for each

1 ≤ k ≤ m− 1, ∑
j∈Jk(m−1,n)∩J ck−1(m−1,n)

|j|(1/p−1/q)q′

1/q′

≤ Cm|J c
k−1(m− 1, n)|1/q′ k

(m+k)( 1
q
− 1
p

)

mm( 1
q
− 1
p

)

≤ Cm

(
nm−k

(m− k − 1)!

) 1
q′ k(m+k)( 1

q
− 1
p

)

mm( 1
q
− 1
p

)
.

Thus, by (11), we will prove the lemma if we are able to show that this last expression is ≤
Cm nm/q

′

log(n)m/p
′ , for some constant C > 0. Therefore, it suffices to prove that, if β := (1

q
− 1

p
)q′,

(15)
kβ(m+k)

(m− k − 1)!mβm
≤ Cm nk

log(n)m(β+1)
.

Let us first suppose that k ≥ min{m/2, m
3β
} = dm for some 0 < d < 1. Note that the left hand

side is less than or equal to mβm, which is ≤ ndm

log(n)m(β+1) if we choose cd > β( q
′

p′
+ 1) + 1 in (14)

because m ≤ log(n)
q′
p′ . Thus we have (15) for k ≥ dm.

For k ≤ dm, (15) is equivalent to

(16)
kβ(m+k)

mm−kmβm
≤ Cm nk

log(n)m(β+1)
,

for some constant C. If k = 1 (16) is trivially satisfied. Let 1 < k ≤ dm. Using elementary

calculus, it can be seen that kβkmk/km ≤ km/3mk/km = mk/k2m/3 � 1 for k ≤ m/2. Thus, it is

enough to show that

k(β+1)m

m(β+1)m
≤ Cm nk

log(n)m(β+1)
.

Taking logarithms, we see that it suffices to prove that, for some constant C > 0 we have,

(17) f(
k log(n)

m
)− k log(n)

m
≤ C,
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where f(t) = (β+ 1) log(t). Note that there is some t0 = t0(β) ≥ 1 such that f(t) ≤ t1/2 for every

t ≥ t0. If k log(n)
m
≥ t0 then f(k log(n)

m
) − k log(n)

m
≤
√

k log(n)
m
− k log(n)

m
≤ 0, and (17) is satisfied. On

the other hand, if k log(n)
m
≤ t0 then (17) is fulfilled taking C = f(t0).

• (ii) For m ≥ log(n)
q′
p′ we just bound |j|(1/p−1/q)q′ by 1, thus we have by Stirling formula, ∑

j∈J (m−1,n)

|j|(1/p−1/q)q′

1/q′

≤ |J (m− 1, n)|1/q′

=

(
(n+m− 2)!

(m− 1)!(n− 1)!

)1/q′

≤ Cm

((
1 +

n

m− 1

)m−1
)1/q′

≤ Cm

(
1 +

n

log(n)
q′
p′

)m−1
q′

≤ Cm n
m
q′

log(n)
m
p′
.

�

4.4. The case p ≥ 2. For the remaining cases it will be crucial the monomial convergence point

of view from [BDF+17, DMP09].

Proof of the case 1
2

+ 1
p
≤ 1

q
on Theorem 1.2. As a consequence of [DMP09, Example 4.9 (2)] we

have that whenever 1
q
≥ 1

r
= 1

p
+ 1

2
and p ≥ 2 it follows

`r ∩B`p ⊂ domH∞(B`p).

Since q ≤ r ≤ p, then B`q ⊂ B`r ⊂ B`p and then B`q ⊂ `r ∩ B`p ⊂ domH∞(B`p). Finally by

Theorem 2.4 we have that there is some constant C = C(p, q) > 0 such that for every n ∈ N and

p, q fulfilling the previous conditions it holds

1

sup
m≥1

(
χM(P(m`np ),P(m`nq ))

)1/m
≥ C.

As K(B`np , B`nq ) ≤ 1 for every 1 ≤ p, q ≤ ∞, the previous inequality and Lemma 2.2 lead us to

the assertion that for 1
q
≥ 1

p
+ 1

2

(18) K(B`np , B`nq ) ∼ 1.

�
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For every z ∈ `∞ we can define z∗ ∈ `∞ the decreasing rearrangement such that |z∗n| ≥ |z∗n+1|
for every n ∈ N. In [BDF+17, Theorem 2.2] the authors proved that

B∞ :=

z ∈ `∞ : lim sup
n→∞

1√
log(n)

(
n∑
j=1

|z∗j |2
)1/2

< 1

 ⊂ domH∞(B`∞).

Consider now the space

X∞ =

z ∈ `∞ : sup
n≥2

1√
log(n)

(
n∑
j=1

|z∗j |2
)1/2

<∞

 ,

endowed with the norm ‖z‖X∞ = sup
n≥2

1√
log(n)

(
n∑
j=1

|z∗j |2
)1/2

. It is not difficult to see that this

is Banach sequence space. Observe also that

(19) BX∞ ⊂ B∞ ⊂ domH∞(B`∞).

By Theorem 2.4 and expression (19) we have for some C = C(p) > 0

(20) sup
n≥2

χM(P(m`n∞),P(m(X∞)n)) ≤ Cm.

Note that the norm in (X∞)n is given by

‖(z1, . . . , zn)‖(X∞)n = sup
2≤k≤n

1√
log(k)

(
k∑
j=1

|z∗j |2
)1/2

.

To complete the study of the mixed Bohr radius for p ≥ 2 it remains to understand the case
1
q
< 1

2
+ 1

p
.

Remark 4.4. For every Reinhardt domain R ⊂ Cn, if P ∈ P(mCn) and w ∈ R if we define

Pw ∈ P(mCn) as Pw(z) = P (w · z), it follows

‖Pw‖P(m`n∞) ≤ sup
z∈R
|P (z)|,

and aα(Pw) = aα(P )wα.

Proof of the case 1
q
< 1

2
+ 1

p
and p ≥ 2 on Theorem 1.2. Fixm ∈ N and take P ∈ P(mCn), P (z) =∑

α∈Λ(m,n)

aαz
α. By Lemma 2.2, it suffices to show that there exists some C > 0 such that for every

z ∈ B`mq it holds ∑
α∈Λ(m,n)

|aαzα| ≤ Cm

(
n

1
2

+ 1
p
− 1
q√

log(n)

)m

‖P‖P(m`np ).
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Consider now y = (z
p
p+2

1 , . . . , z
p
p+2
n ) and w = (z

2
p+2

1 , . . . , z
2
p+2
n ). It is easy to see that z = y · w =

(y1w1, . . . , ynwn), and thus, by (20) and Remark 4.4, we have∑
α∈Λ(m,n)

|aαzα| =
∑

α∈Λ(m,n)

|aαwαyα|

≤ Cm‖y‖m(X∞)n‖Pw‖P(m`n∞)

≤ Cm‖y‖m(X∞)n‖w‖
m
`np
‖P‖P(m`np ).

It remains to check that

‖y‖(X∞)n‖w‖`np ≤ C
n

1
2

+ 1
p
− 1
q√

log(n)
.

To start, let 1 ≤ k ≤ n then

‖(y∗1, . . . , y∗k)‖`k2 = ‖(z∗1 , . . . , z∗k)‖
p
p+2

`k2p
p+2

≤
(
‖(z∗1 , . . . , z∗k)‖`kqk

1
p

+ 1
2
− 1
q

) p
p+2

≤ ‖z‖
p
p+2

`nq

(
k

1
p

+ 1
2
− 1
q

) p
p+2

,

so we have

‖y‖(X∞)n = sup
2≤k≤n

1√
log(k)

‖(y∗1, . . . , y∗k)‖`k2

≤ sup
2≤k≤n

1√
log(k)

‖z‖
p
p+2

`nq

(
k

1
p

+ 1
2
− 1
q

) p
p+2

≤ C‖z‖
p
p+2

`nq

n
1
2
− 1
q

p
p+2√

log(n)
.

On the other hand,

‖w‖`np = ‖z‖
2

2+p

`n2p
p+2

≤ ‖z‖
2

2+p

`nq
n( 1

2
+ 1
p
− 1
q )

2
2+p

= ‖z‖
2

2+p

`nq
n

1
p
− 1
q

2
2+p .

Finally,

‖y‖(X∞)n‖w‖`np ≤ C‖z‖
p
p+2

`nq

1√
log(n)

n
1
2
− 1
q

p
p+2‖z‖

2
2+p

`nq
n

1
p
− 1
q

2
2+p

= C‖z‖`nq
n

1
2

+ 1
p
− 1
q√

log(n)
,

as we needed. �
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dimensional polydisk is equivalent to
√

(logn)
n . Advances in Mathematics, 264:726–746, 2014.

[CDG+15] Daniel Carando, Andreas Defant, Domingo Garćıa, Manuel Maestre, and Pablo Sevilla-Peris. The
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[DGM03] Andreas Defant, Domingo Garćıa, and Manuel Maestre. Bohr’s power series theorem and local ba-

nach space theory-to the memory of our friend Klaus Floret. Journal fur die reine und angewandte

Mathematik, 557:173–197, 2003.
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Departamento de Matemática - Pab I, Facultad de Cs. Exactas y Naturales, Universidad de

Buenos Aires (1428) Buenos Aires, Argentina and CONICET

E-mail address: dgalicer@dm.uba.ar

E-mail address: mmansilla@dm.uba.ar

E-mail address: smuro@dm.uba.ar


