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Descomposición monomial y sumabilidad
para funciones holomorfas en altas dimensiones

Resumen

El objetivo de esta tesis es contribuir a la teoŕıa de funciones holomorfas y polinomios
homogéneos en varias e infinitas variables. Estudiamos diversos objetos que, de una u otra
manera, involucran la sumabilidad de los coeficientes de polinomios homogéneos depen-
diendo de su norma uniforme.

Comparamos las normas uniforme y de coeficientes en espacios de polinomios ho-
mogéneos en varias variables complejas. En particular estudiamos el comportamiento
asintótico de las constantes de equivalencia entre estas dos normas cuando la cantidad
de variables tiende a infinito.

Damos una descripción completa del comportamiento asintótico de las constantes de
incondicionalidad mixtas en espacios de polinomios homogéneos en finitas variables. Para
lograrlo resulta indispensable el estudio que hacemos de los conjuntos de convergencia
monomial para estos espacios de polinomios. En este sentido conseguimos un progreso
sustancial en la caracterización de dichos conjuntos para el caso de polinomios homogéneos
en `r cuando 1 ă r ď 2, probando una conjetura abierta en el área.

Introducimos novedosas descomposiciones en el conjunto de monomios, que son de gran
utilidad para atacar problemas de incondicionalidad y sumabilidad permitiendo un manejo
adecuado de la dependencia entre el grado de homogeneidad y la cantidad de variables en
ciertas desigualdades.

Definimos el radio de Bohr mixto extendiendo la noción preexistente de radio de Bohr.
Usando dichas descomposiciones mostramos, para todo el espectro de parámetros involu-
crados, cuál es el comportamiento asintótico de este radio.

También gracias a dichas descomposiciones, conseguimos resultados acerca de los con-
juntos de convergencia monomial de otras familias de funciones holomorfas. Para Hbp`rq,
las funciones enteras y acotadas en conjuntos acotados en `r, caracterizamos aquellos con-
juntos de convergencia cuando 1 ă r ď 2. Cuando r ą 2 logramos hacerlo para Hbp`r,8q y
damos cotas superiores e inferiores en el caso de Hbp`rq. Hacemos un avance significativo
para el caso de funciones holomorfas y acotadas en la bola de `r con 1 ă r ď 2.
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Monomial decomposition and summability
for holomorphic functions in high dimensions

Abstract

This thesis aims to contribute to the theory of holomorphic functions and homogeneous
polynomials in several and infinitely many variables. We study several objects that, in one
way or another, involve the summability of homogeneous polynomial coefficients depending
on their uniform norm.

We compare the uniform and the coefficients norms in spaces of homogeneous polyno-
mials in several complex variables. In particular, we study the asymptotic behaviour of
the equivalence constants between these two norms when the number of variables goes to
infinity.

We give a complete description of the asymptotic behaviour of the mixed unconditional
constants in spaces of homogeneous polynomials with finite variables. To achieve this it is
essential that we study the sets of monomial convergence for these spaces of polynomials.
In this sense, we make a substantial progress in the characterization of these sets in the
case of homogeneous polynomials on `r when 1 ă r ď 2 proving an open conjecture in the
area.

We introduce novel decompositions of the set of monomials, which are very useful to
attack problems of unconditionality and summability allowing an adequate management of
the dependence between the degree of homogeneity and the number of variables in certain
inequalities.

We define the mixed Bohr radius extending the preexisting notion of Bohr radius.
Using these decompositions we show, for the entire spectrum of parameters involved, the
asymptotic behaviour of this radius.

Also thanks to these decompositions, we get results for the sets of monomial convergence
of other families of holomorphic functions. For Hbp`rq, the entire functions and bounded in
their bounded sets in `r, we characterize their sets of convergence when 1 ă r ď 2. When
r ą 2 we manage to do it for Hbp`r,8q and give upper and lower bounds in the case of
Hbp`rq. We make significant progress in the case of holomorphic and bounded functions in
the ball of `r with 1 ă r ď 2.
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Introduction

Complex analysis in one variable is one of the most influential theories of mathemat-
ics. Many other fields of science, inside and outside of mathematics are strongly related
to it: number theory, differential equations, harmonic analysis, fluid mechanics, electro-
magnetism, quantum mechanics, among others, would not be same without the power of
complex analysis. Within this theory, one of the fundamental cornerstones is the equiva-
lence between differentiability and analyticity. That is, it is the same for a function to be
complex differentiable in an open set of the complex plane as to be written locally as a
power series. This fact still applies to complex functions of several variables, but... What
happens in case there are infinitely many variables?

The idea of developing a theory of complex analysis in infinitely many variables starts at
the beginning of the 20th century with the works of Hilbert, Fréchet and Gâteaux, among
others. In this context, the problem of relating the differentiability of a function with its
Taylor series expansion becomes more subtle. Studying functions in the ball of c0, Hilbert
proposes to work with those mappings that can be written as infinite linear combination
of the monomials, that is

fpzq “
ÿ

α“pα1,...,αnqPNpNq0

aαpfqz
α1
1 ¨ ¨ ¨ zαnn .

Hilbert [Hil09] declares, without a proof, that these should be exactly the holomorphic
functions in the ball of c0. However, Toeplitz [Toe13] gives an example of a holomorphic
function and a point in c0 for which its monomial expansion does not converge, contradict-
ing Hilbert’s statement.

In the development of the adequate notion of holomorphy in infinitely many variables,
the vision given by the Fréchet-differentiability of the function becomes strong. Given X
a Banach space over C and an open set U Ă X, a complex valued function is holomorphic
on U if it meets the differentiability condition given by the difference quotient. This point
of view shows to be very fruitful allowing a development of a consistent and productive
theory of infinite dimensional complex analysis. A fundamental fact of this definition is
that, for every holomorphic function f : U Ă X Ñ C and every point z0 P U it exists a
sort of Taylor expansion: there are m-homogeneous polynomials Pmpfqpz0q such that

fpzq “ fpz0q `
ÿ

mě1

Pmpfqpz0qpz ´ z0q,
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for every z in a neighborhood of z0. These homogeneous polynomials are somewhat more
abstract objects than monomials but, in any case, very useful.

In some Banach spaces, for example in `8 or c0, it is possible to think of monomials of

the form zα “ zα1
1 ¨ ¨ ¨ zαnn with α “ pα1, . . . , αnq P NpNq0 . This is due to the fact that the

elements of these spaces are sequences. This additional structure, which is not shared by all
the Banach spaces, allows us to talk about a monomial expansion. The definition through
differentiability provides a more general theory, while Hilbert’s idea has the potential to
be based on the more concrete concept of the monomials. Looking for a reconciliation
between Hilbert’s vision and the one used to define holomorphic functions, some questions
emerge. Given a Banach space X (with an extra structure such that the monomials make
sense) and a holomorphic function f in the ball of X, we have the following queries:

• Does it always make sense to think of an expression of form
ř

αPNpNq0
aαpfqz

α?

• If it does, for which elements z in the ball of X do we have fpzq “
ř

αPNpNq0
aαpfqz

α?

These questions promote the study of the monomial convergence in families of holomor-
phic functions. A systematic investigation of these type of problems begins in [DMP09].
For those Banach spaces X that are also sequence spaces, that is, X Ă CN with continuous
inclusions `1 ãÑ X ãÑ `8, we can always consider the notion of monomial. Given a Banach
sequence space X every holomorphic function in the whole space X (or in its ball, for
example) f defines a sequence paαpfqqαPNpNq0

such that

fpzq “
ÿ

αPNpNq0

aαpfqz
α,

for every z with finite support in the domain of f . Thus, given a family of holomor-
phic functions F , its set of monomial convergence is defined as the largest set where the
monomial expansion converges for every function in the family, i.e.,

monF “

#

z P CN :
ÿ

α

|aαpfqz
α| ă 8 for every f P F

+

.

In [DMP09] the authors introduce two key results in the theory linking the study of the
monomial convergence sets of certain families of holomorphic functions with the asymptotic
behavior of the mixed unconditionality constant of spaces of homogeneous polynomial. In
addition, several results are obtained in order to characterize these sets for some natural
families of holomorphic functions, laying the foundations of their study.

It is not simple at all to describe these sets of monomial convergence in general, not
even in concrete examples of families of holomorphic functions. In the case of `1, thanks
to the work of Ryan in [Rya87] and Lempert in [Lem99], we know that monPpm`1q “ `1
for all m P N and monH8pB`1q “ B`1 . For `8 (the other end of the spectrum), in the
outstanding work of Bayart, Defant, Frerick, Maestre and Sevilla-Peris [BDF`17] they
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manage to prove monPpm`8q “ ` 2m
m´1

,8 for all m P N and B Ă monH8pB`8q Ă B, with

B :“

$

&

%

z P B`8 : lim sup
nÑ8

1
a

logpnq

˜

n
ÿ

k“1

pz˚k q
2

¸1{2

ă 1

,

.

-

.

In [BDS19] an accurate description of the monomial convergence set of Ppm`p,8q, for p ą 2,
is given and this is the only other case where a precise description of the set of monomial
convergence is known. In [BDS19] and [DMP09] the authors also show some upper and
lower bounds of these sets for H8pB`pq.

While the foundations of infinite dimensional holomorphy were discussed, Harald Bohr
finds a deep link between this flourishing theory and number theory. He devotes many
efforts to the study of Dirichlet series. These series, under some conditions, define holo-
morphic functions on certain domains of the complex plane. A paradigmatic example of
them is the Riemann zeta function. In 1913 in [Boh13] Bohr analyzes the distinct regions
in which these types of functions converge in different senses. He makes great advances in
the study of these issues, leaving a question unanswered: What is the thickness of the gap
between the region of absolute convergence and the region of uniform convergence for these
series? He builds a bridge between the Dirichlet series and the holomorphic functions in
the ball of c0, that would be essential to solve this question years later. This link is known
nowadays as the Bohr transform and, thanks to the decomposition into prime numbers of
the integers, it gives a biunivocal mapping from those Dirichlet series which are convergent
and bounded in tz P C : Repzq ą 0u into the set of holomorphic and bounded functions in
the ball of c0.

Using Taylor’s decomposition into homogeneous polynomials for holomorphic functions
in B`8 , in 1931 Bohnenblust and Hille go one step further in the research that Bohr
had initiated. Inspired by Littlelwood’s 4{3 inequality, they are able to translate the
problem posed by Bohr into the study of certain inequalities that relate the summability
of the coefficients of homogeneous polynomials with their uniform norm in the ball of
`8. In [BH31] they prove that for any m-homogeneous polynomial in n complex variables

P “
ÿ

α1`¨¨¨`αn“m

aαpP qz
α, it holds

˜

ÿ

α1`¨¨¨`αn“m

|aαpP q|
2m
m`1

¸
m`1
2m

ď Cm sup
zPB`n8

|P pzq|, (1)

with Cm ą 0 a constant independent of the number of variables n. This result allows them
to determine the value of the gap between regions of absolute and uniform convergence for
Dirichlet series.

Motivated by these questions, in 1914, Bohr raises another problem about holomor-
phic functions in one variable. In [Boh14] he proposes to find the largest radius r ą 0
such that for every holomorphic function on the unit disk of the complex plane given by
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fpzq “
ř

kě0 akpfqz
k it holds

sup
|z|ăr

ÿ

kě0

|akpfqz
k| ď sup

|z|ă1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kě0

akpfqz
k

ˇ

ˇ

ˇ

ˇ

ˇ

. (2)

Bohr solves this problem by showing that the maximal radius is 1{3.
In 1989, many years later, this concept is resumed in [DT89], generalizing and con-

necting it with notions of the local theory of Banach space. It begins a systematic study
of what is known as the n-dimensional Bohr radius. Given some norm over Cn, that is
X “ pCn, } ¨ }Xq, it is studied the variant of Bohr’s problem that comes from replacing
the unit disk by the ball of X. Thus, the problem is to seek for the largest radius r ą 0
such that for any holomorphic function in the ball of X given by fpzq “

ř

αPNn0
aαpfqz

α it
follows

sup
}z}Xăr

ÿ

αPNn0

|aαpfqz
α| ď sup

}z}Xă1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

αPNn0

aαpfqz
α

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

This maximal radius is called the Bohr radius of the ball of X and it is denoted by KpBXq.
In this way we can say that Bohr’s result is translated as KpDq “ 1{3. It is worth mention-
ing that for the ball of no space with a dimension larger than one the precise value of Bohr’s
radius is known. The advances in this field are linked to understanding the asymptotic
behavior of this radius for the balls of certain spaces when its dimension tends to infin-
ity. Many efforts have been devoted to understanding the asymptotic behavior of KpB`np q,
particularly in the articles [DT89, KB97, Aiz00, Boa00, BB04, Bay12, DP06] where the
problem is treated in one way or another, achieving partial advances.

In one of the most influential articles of the area [DFOC`11] a fundamental step is
taken, the authors manage to prove that Bohr’s radius of the n-dimensional polydisk has
the following asymptotic behaviour

KpDnq „
c

logpnq

n
.

This is achieved through a deep study of the inequality achieved by Bohnenblust and Hille
given in (1) (see also [BPSS14]). In [DF11] the authors manage to describe the asymptotic
behavior of Bohr’s radius for the ball of `np for all 1 ď p ď 8 obtaining that

KpB`np q „

ˆ

logpnq

n

˙1´ 1
minp2,pq

.

Many of these investigations relate Bohr’s radius of the ball of a certain Banach space
X (with finite dimension) to the unconditionality constants in spaces of homogeneous
polynomials over X.

The purpose of this thesis is to resume several of the ideas that arise from understand-
ing Hilbert’s ideas (describing holomorphic functions in infinite dimension), Harald Bohr’s
studies (that gave way to research around the radius that bears his name) and the coeffi-
cient summability of homogeneous polynomials (as it appears in the inequality studied by

viii



Bohnenblust and Hille). It is addressed the intimate relationship between all these con-
cepts with the unconditionality in spaces of homogeneous polynomials which is, in some
way, the idea that links them and is present throughout the thesis.

All this, in one way or another, involves the summability of the coefficients of ho-
mogeneous polynomials depending on their uniform norm. For this reason we begin by
comparing the uniform and coefficient norms in spaces of homogeneous polynomials in sev-
eral complex variables. In particular, we study the asymptotic behavior of the equivalence
constants between these two norms when the number of variables tends to infinity.

We introduce novel decompositions of the monomials, which are very useful to attack
problems of unconditionality and summability. These decompositions allow an adequate
management of the dependence between the degree of homogeneity and the number of
variables in certain inequalities. Thanks to this, we managed to give good descriptions of
the set of monomial convergence for several natural families of holomorphic functions and
successfully describe the asymptotic behavior of a generalization of the Bohr radius for the
whole spectrum of parameters involved. We use some of these results to give a finished
description of the asymptotic behavior of the mixed unconditionality constants for spaces
of homogeneous polynomials.

Below we give a description of each chapter of the thesis.

Chapter 1 contains the notation and previous results of the general theories necessary
for the presentation of the following chapters.

In Chapter 2 some variants of the Bohnenblust-Hille inequality (1) are developed. A
general problem concerning the sumability of coefficients of m-homogeneous polynomials
in n complex variables is studied. We seek to understand, for 1 ď q, p ď 8 fixed, the
asymptotic behavior of the smaller constants Amp,qpnq and Bm

q,ppnq such that for every m-

homogeneous polynomial in n complex variables P “
ÿ

α1`¨¨¨`αn“m

aαpP qz
α it holds,

˜

ÿ

α1`¨¨¨`αn“m

|aαpP q|
q

¸1{q

ď Amp,qpnq sup
zPB`np

|P pzq|,

sup
zPB`np

|P pzq| ď Bm
q,ppnq

˜

ÿ

α1`¨¨¨`αn“m

|aαpP q|
q

¸1{q

.

Also, other variants of this type of inequalities are presented and the random polynomials
are introduced (necessary throughout the thesis). Finally, some results obtained on the
behavior of Amp,qpnq and Bm

q,ppnq are applied, obtaining conclusions about complex inter-
polation in spaces of homogeneous polynomials and von Neumann inequalities in operator
theory.

In Chapter 3 the sets of monomial convergence for families of holomorphic functions
are defined. Section 3.3 presents families of holomorphic functions with the rearrangement
property, an indispensable technical attribute in all descriptions for sets monomial conver-
gence. It is proven that the most natural and studied families have this property. Finally
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it is proven that, for 1 ă r ď 2, m ě 2 and q “ pmr1q1 we have

`q Ă monPpm`rq, (3)

proving a conjecture that appears in [DMP09].
Chapter 4 introduces the notion of mixed unconditionality in spaces of polynomials. It

is shown that, in a precise sense, the mixed unconditionality in PpmCnq does not depend on
the base. Some results that link it with the sets of monomial convergence for H8pBXq and
PpmXq are presented. Thanks to these, the inclusion obtained for monPpm`rq in (3), and
the results on the constants Amp,qpnq and Bm

q,ppnq, a description of the correct asymptotic
behavior of the mixed unconditionality constant for the entire range of values on which it
depends is achieved.

In Chapter 5 the Bohr radius is discussed. The mixed Bohr radius, that generalizes the
classic Bohr radius, is presented and it is shown, imitating what happens for the classic case,
that it is related to the mixed unconditionality in spaces of polynomials. The asymptotic
behavior of the mixed Bohr radius for the entire range of values on which it depends is
characterized. For this, tools that come from the study of sets of monomial convergence are
used. A novel decomposition of the monomials is introduced: the bounded decomposition.
This decomposition is based on distinguishing monomials in terms of the maximum degree
of their variables. This allows to handle certain inequalities with the technical subtlety
necessary to achieve the correct asymptotic order.

In Chapter 6, the sets of monomial convergence of the spaces Hbp`rq for 1 ă r ď 2 and
Hbp`r,sq for 2 ď r, s ď 8 are studied. The second monomial decomposition is presented:
the factorization decomposition. Unlike other decompositions that appear in the literature,
which consist on a partition of the set of monomials, this technique allows factoring each
multi-index into multi-indexes with a very specific structure. Being more precise, it consists
in factoring each monomial as the product of a tetrahedral monomial and another monomial
in which every variable is raised to an even power. From it the following characterizations
are achieved:

• For 1 ă r ď 2,

monHbp`rq “

#

z P CN : sup
ně1

řn
k“1 z

˚
k

logpn` 1q1´
1
r

ă 8

+

.

• For 2 ă r ď 8,

monHbp`r,8q “

$

’

&

’

%

z P CN : sup
ně1

´

řn
k“1 k

2
r pz˚k q

2
¯1{2

a

logpn` 1q
ă 8

,

/

.

/

-

.

Also there are given quiet tight upper and lower bounds for monHbp`r,sq with 2 ď r ď 8
and 2 ă s ă 8.

In Chapter 7 we use the results obtained in Chapter 6 to provide descriptions of the
sets of monomial convergence for H8pB`rq when 1 ă r ď 2. This descriptions improve
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those known so far, characterizing the geometry of this sets in a very specific sense that is
developed in the chapter.

Chapter 8 is the last one, here it is resumed the result of Chapter 3 written in (3).
Thanks to interpolation techniques in cones, a substantial improvement is achieved, ob-
taining for 1 ă r ď 2, m ě 5 and q :“ pmr1q1 that

`q, m
logpmq

Ă monPpm`rq Ă `q,8.
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Chapter 1

Preliminaries

In this chapter we set the notation for the rest of this monograph. Here we give the
background notions of polynomials and holomorphic functions over Banach spaces. We
introduce some of the algebraic, topologic and geometric structures that will be key to
understand the rest of the chapters.

As usual N, Z, R and C denotes the sets of natural, integer, real and complex numbers
respectively. For the open unit disc in C we use D and for the set of unimodular elements
of D, usually called the unidimensional torus, T.

Given k P N we denote by Sk to the group of all the permutations of t1, . . . , ku, i.e.,
the biyective mappings σ : t1, . . . , ku Ñ t1, . . . , ku. For the group of permutations of N we
use SN.

1.1 Banach Spaces

We will use X for a general Banach space and } ¨ }X to refer to its norm, we write
BX :“ tx P X : }x}X ă 1u to denote its ball. To name the ball of radius r ą 0 centered
at x P X we will use Brpxq. Throughout the text all the Banach spaces will be over the
complex field C. Recall a subset U Ă X is said to be balanced if, for every λ P D the set
λ ¨ U :“ tλx : x P Uu is contained in U . Given X and Y Banach spaces we will denote the
space of linear and bounded operators from X to Y by LpX,Y q, and given T P LpX,Y q
we will use }T }LpX,Y q :“ supxPBX }T pxq}Y or just }T } to lighten the notation when the
context allows the vagueness. We will use X 1 “ LpX,Cq to denote the dual space of X.

1.1.1 Basis and Unconditionality

A sequence pbnqně1 Ă X is said to be a basis for X if, for every x P X there is a scalar
sequence panpxqqně1 Ă C such that x “ limNÑ8

řN
n“1 anpxqbn. We can consider for a basis

1



Chapter 1. Preliminaries

pbnqně1 the biorthogonal mappings

b˚n : X Ñ C

x “
ÿ

kě1

akpxqbk ÞÑ anpxq.

Whenever b˚n is a continuous functional for every n P N the sequenece pbnqně1 is said to
be a Schauder basis. The sequence pb˚nqně1 is called the dual basis of pbnqně1 and it is
a basic sequence, this means it is a Schauder basis of the subspace of X 1 generated by
rb˚n : n P Ns Ă X 1. In the case of reflexive spaces, the dual basis is always a basis for the
dual space.

Given 1 ď p ă 8, the well known Banach space

`p :“

#

z “ pz1, . . . , zn, . . .q P CN :
ÿ

ně1

|zn|
p ă 8

+

,

endowed with the norm }z}`p :“
`
ř

ně1 |zn|
p
˘1{p

is an example of a space with Schauder
basis. Here the canonical vectors

en :“ p0, . . . , 0, 1
loomoon

nth position

, 0, . . .q for every n P N,

form the Schauder basis penqně1. Notice that

`8 :“

"

z “ pz1, . . . , zn, . . .q P CN : sup
ně1

|zn| ă 8

*

,

with the usual norm }z}8 “ supně1 |zn| does not support a Schauder basis, as it is not
separable. On the other hand the canonincal vectors form a Schauder basis for the closed
subspace

c0 :“
!

z P `8 : lim
nÑ8

zn “ 0
)

.

For 1 ď p ď 8 we write p1 for its conjugate exponent (i.e., 1
p `

1
p1 “ 1). Recall that for

1 ă p ă 8 the dual space for `p is `p1 and also c10 “ `1 and `11 “ `8. The space `1 is an
example of Banach spaces with Shcauder basis for which its dual does not support one.

Another very studied concept in geometry of Banach spaces is its unconditionality.
This concept will be one of the key elements of this thesis. Given a sequence pxnqně1 in
a Banach space X, the series

ř

ně1 xn is said to converge unconditionally if
ř

ně1 xσpnq,
for every permutation σ of N. There are plenty of equivalent definitions for this concept
which can be found as the Omnibus Theorem on Unconditionality Summability on [DJT95,
Theorem 1.9], here we need only a few of those equivalences.

Theorem 1.1.1. For a sequence pxnqně1 in a Banach space X they are equivalent

(i) The series
ř

ně1 xn converges unconditionally.

2



1.1. Banach Spaces

(ii) The series
ř

ně1 εnxn converges for every pεnqně1 Ă TN.

(iii) The series
ř

ně1 εnxn converges for every pεnqně1 P B`8.

Given X a Banach spaces with Schauder basis pxnqně1 we say it is an unconditional
basis for X whenever, each convergent series of the form

ř

ně1 anxn converges uncondi-
tionally. This means the convergence of the series representation of every element of the
space does not depend on the order of the terms in the sum, which is a very good and
useful qualitative property. Notice, for example, every orthonormal basis in a Hilbert space
is an unconditional basis. In particular this holds for the Fourier basis of L2r0, 1s, with
the practical benefit that any signal may be recovered by its harmonic components inde-
pendently of the order of addition. Maybe that example illustrates the importance of this
notion in many branches of analysis. The following theorem gives a more quantitative way
to understand unconditionality (see [AK06, Theorem 3.1.3]).

Theorem 1.1.2. Given X a Banach space with Schauder basis pxnqně1 the following are
equivalent.

(i) pxnqně1 is an unconditional basis for X.

(ii) There exists some constant K ą 0 such that for every panqně1 Ă C and pεnqně1 Ă T
it holds

›

›

›

›

›

ÿ

ně1

εnanxn

›

›

›

›

›

X

ď K

›

›

›

›

›

ÿ

ně1

anxn

›

›

›

›

›

X

. (1.1)

Given an unconditional basis pxnqně1 for the Banach space X we say it is a K-
unconditional basis if it fulfills inequality (1.1). The optimal constant for that basis in
(1.1) is denoted by χppxnqně1;Xq.

The unconditional constant of the space X is given by

χpXq :“ inf χppxnqně1;Xq,

where the infimum is taken over all the possible unconditional basis pxnqně1 of X.

Observe that the canonical vectors form a 1-unconditional basis for `p with 1 ď p ă 8
and c0 as well as every orthonormal basis for a separable Hilbert space.

For finite dimensional Banach spaces every basis is unconditional as convergence is
trivially guaranteed. Anyway, Theorem 1.1.2 allows to give a meaningful sense to the study
of unconditionality in the finite dimensional case. It will be extremely useful to understand
unconditional basis constants for finite dimensional spaces to tackle down problems on
infinite dimensional ones.

1.1.2 Banach sequence spaces

In this section we introduce a special kind of Banach spaces that will be essential in our
study of holomorphic functions thanks to its nice notion of coordinates.

3



Chapter 1. Preliminaries

For every pair of elements x, y P CN we will use

x ¨ y :“ px1y1, x2y2, . . . , xnyn, . . .q

to denote the coordinatewise product, and |x| denotes the sequence p|x1|, |x2|, . . . , |xn|, . . .q.
If |xi| ď |yi| for every i P N we write |x| ď |y|. A Banach sequence space is a Banach space
pX, } ¨ }Xq such that `1 Ă X Ă `8 satisfying that, if x P CN and y P X with |x| ď |y|,
then x P X and }x}X ď }y}X . That is, if an element is bounded in norm by another that
belongs to the space, first one must be in the space as well.

A non-empty open set R Ă X is called a Reinhardt domain if given x P CN and y P R
such that |x| ď |y| then x P R. Given a bounded sequence x its decreasing rearrangement
x˚ is the sequence defined as

x˚n “ inft sup
jPNzJ

|xj | : J Ă N, cardpJq ă nu.

A Banach sequence space pX, } ¨ }Xq is said to be symmetric if x˚ P X if and only if x P X
and, moreover }x}X “ }x

˚}X . A set A Ă X is symmetric if x P A if and only if x˚ P A.

Proposition 1.1.3. For every x P c0 there is some injective mapping σ : NÑ N such that
x˚n “ |xσpnq| for all n P N.

We will say that a sequence x P CN is decreasing whenever |x| is decreasing.

The Banach spaces `p with 1 ď p ď 8 and c0 are Banach sequence spaces. Also the
more general Lorentz spaces are good examples of this spaces, let us recall their definition.
For 1 ď p, q ď 8 the Lorentz space `p,q is defined as

`p,q :“
!

z P CN : }pk
1
p
´ 1
q z˚k qkě1}`q ă 8

)

.

Given 1 ď p, q ď 8, for z P `p,q we define

ρp,qpzq :“ }pk
1
p
´ 1
q z˚k qkě1}`q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

sup
kě1

k
1
p |z˚k | for q “ 8,

˜

ÿ

kě1

k´1|z˚k |
q

¸
1
q

for q ă 8, p “ 8,

˜

ÿ

kě1

k
q
p
´1
|z˚k |

q

¸
1
q

for q, p ă 8.

Whenever 1 ď q ď p ď 8, }z}`p,q :“ ρp,qpzq defines a norm over `p,q that makes this spaces
a Banach sequence space. Observe that `p,p “ `p for every 1 ď p ď 8. For 1 ď p ď q ď 8
the mapping ρp,q does not fulfill the triangle inequality but it is a complete quasi-norm in
`p,q, i.e. there is c ą 0 such that for every z, w P `p,q it holds

ρp,qpz ` wq ď c pρp,qpzq ` ρp,qpwqq .
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1.1. Banach Spaces

We will denote in general }¨}`p,q “ ρp,qp¨q even in the cases this is not a norm. This problem
can be fixed by considering these spaces endowed with the norm given, for z P `p.q, by

}z}`pp,qq “

˜

8
ÿ

n“1

n
q
p
´1

˜

1

n

n
ÿ

k“1

z˚k

¸q¸1{q

.

For 1 ă p, q ď 8 and z P `p,q, it holds

ρp,qpzq ď }z}`pp,qq ď p1ρp,qpzq, (1.2)

so we can always work with the quasi-norm ρp,qp¨q and treat p`p,q, ρp,qp¨qq as a Banach
sequence space if we are willing to pay p1 as a price every time we do so (see [BS88,
Lemma 4.5]). Also we need a result concerning the dual spaces of Lorentz spaces, which is
an adaptation to the case we need of [BS88, Corollary 4.8].

Theorem 1.1.4. For 1 ă p ă 8 and 1 ď q ă 8 the dual space p`p,qq
1 is isomorphic to

`p1,q1.

One last particular family of Banach sequence spaces we will need are the Marcinkiewicz
spaces. Let Ψ “ pΨpnqq8n“0 be an increasing sequence of nonnegative real numbers with
Ψp0q “ 0 and Ψpnq ą 0 for every n P N. These functions are usually known as symbols.
The Marcinkiewicz sequence space associated to the symbol Ψ, denoted by mΨ, is the
vector space of all bounded sequences pznqn such that

}z}mΨ :“ sup
ně1

řn
k“1 z

˚
k

Ψpnq
ă 8.

For X a Banach sequence space and n a natural number we consider the nth projection

πn : X Ñ Cn

px1, . . . , xn, . . .q ÞÑ px1, . . . , xnq, (1.3)

and the nth inclusion

ιn : Cn Ñ X

px1, . . . , xnq ÞÑ px1, . . . , xn, 0, . . .q. (1.4)

We denote Xn to Cn endowed with the quotient norm induced by ιn, i.e.

}pz1, . . . , znq}Xn :“ inft}x}X : ιnpxq “ pz1, . . . , znqu.

Observe that this construction makes πn : X Ñ Xn and ιn : Xn Ñ X norm one operators.
Sometimes it will useful to identify Xn with inpXnq Ă X. A very important example is
`np :“ p`pqn, this is the Banach space of all n-tuples z “ pz1, . . . , znq P Cn endowed with the

norm }pz1, . . . , znq}p “
´

řn
i“1 |zi|

p
¯1{p

if 1 ď p ă 8, and }pz1, . . . , znq}8 “ maxi“1,...,n |zi|

for p “ 8. We will also consider `np,q :“ p`p,qqn for 1 ď p, q ď 8.
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Chapter 1. Preliminaries

1.2 Homogeneous polynomials and multilinear maps.

Given X1, . . . Xm, Y Banach spaces a multilinear map (or multilinear form) from
X1 ˆ ¨ ¨ ¨ ˆ Xm to Y is a function T : X1 ˆ ¨ ¨ ¨ ˆ Xm Ñ Y which is linear in every
coordinate. We also name a function like that an m-linear map, being more specific.
The set of all m-linear map from X1 ˆ ¨ ¨ ¨ ˆ Xm to Y is a vector space with the usual
sum and scalar product of functions inherited from Y . Recall that a multilinear map
T : X1 ˆ ¨ ¨ ¨ ˆXm Ñ Y is bounded or continuous whenever

}T }LpX1,...,Xn;Y q :“ supt}T px1, . . . , xmq}Y : x1 P BX1 , . . . , xm P BXmu ă 8,

and the set of all bounded m-linear maps from X1ˆ ¨ ¨ ¨ˆXm to Y equiped with the norm
}¨}LpX1,...,Xm;Y q is a Banach space which we denote by LpX1, . . . , Xm;Y q. Whenever Y “ C
we simply use LpX1, . . . , Xmq, and if X “ X1 “ ¨ ¨ ¨Xm we use LpmX;Y q.

Let W1, . . .Wm, X1 . . . , Xm be Banach spaces and ui P LpWi, Xiq let us consider the
mapping

pu1, . . . , umq : W1 ˆ ¨ ¨ ¨ ˆWm Ñ X1 ˆ ¨ ¨ ¨ ˆXm

pw1, . . . , wmq ÞÑ pu1pw1q, . . . , umpwmqq.

Proposition 1.2.1. Let W1, . . .Wm, X1 . . . , Xm, Y, Z Banach spaces. For ui P LpWi, Xiq

for every 1 ď i ď m, v P LpY,Zq and T P LpX1, . . . , Xm;Y q it holds v ˝ T ˝ pu1, . . . , umq P
LpW1, . . .Wm;Zq and

}v ˝ T˝pu1, . . . , umq}LpW1,...Wm;Zq ď

ď}v}LpY,Zq}T }LpX1,...,Xm;Y q}u1}LpW1,X1q ¨ ¨ ¨ }um}LpWm,Xmq.

Given a pair of Banach spaces X,Y and T P LpmX;Y q a mapping

P : X Ñ Y

x ÞÑ T px, . . . , xq,

is an m-homogeneous polynomial from X to Y . We say P is bounded or continuous if

}P }PpmX;Y q :“ sup
xPBX

}P pxq}Y ă 8.

In other words, is we consider the diagonal inclusion

∆m : X Ñ Xm

x ÞÑ px, . . . , xq,

a bounded m-homogeneous polynomial is a map P “ T ˝∆m where T P LpmX;Y q.
Notice that for every m-homogeneous polynomial P defined by T P LpmX;Y q it holds

}P }PpmX;Y q ď }T }LpmX;Y q. (1.5)
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1.2. Homogeneous polynomials and multilinear maps.

The set of all m-homogeneous bounded polynomials from X to Y with the norm }¨}PpmX;Y q

is a Banach space that we denote PpmX;Y q . Whenever Y “ C we directly use PpmXq
instead of PpmX;Cq. For P P PpmX;Y q there is always a multilinear map T P LpmX;Y q
such that P “ T ˝∆m, we say T is a m-linear map associated to P .

For a general map g : U Ñ Y with Y a Banach space and some subset V Ă U a useful
notation will be

}g}V :“ sup
vPV

}gpvq}Y .

Let P P PpmX;Y q observe that with this notation }P }BX “ }P }PpmX;Y q. A simple but
central property of m-homogeneous polynomials is, as their name suggest, its homogeneity.
This is, given λ P C, x P X and P P PpmX;Y q, it holds

P pλxq “ λmP pxq.

The homogeneous polynomials over Banach spaces have the nice and very important
ideal property.

Proposition 1.2.2. Let W,X, Y, Z Banach spaces. For u P LpW,Xq, v P LpY,Zq and
P P PpmX;Y q it holds v ˝ P ˝ u P PpmW ;Zq and

}v ˝ P ˝ u}PpmW ;Zq ď }v}LpY,Zq}P }PpmX;Y q}u}
m
LpW,Xq.

In particular, for Banach sequence spaces we have the following extremely useful corol-
lary.

Corollary 1.2.3. Let X be a Banach sequence space and P P PpmXq. For every n P N it
holds Pn :“ P ˝ πn P PpmXnq and }Pn}PpmXnq ď }P }PpmXq.

With this in mind, even though our main interest will be placed in the spaces of
continuous polynomial on infinite dimensional spaces, it will be very useful to study their
finite dimensional versions.

An m-homogeneous polynomial in n complex variables is a function P : Cn Ñ C of the
form

P pz1, . . . , znq “
ÿ

αPΛpm,nq

aαz
α,

where Λpm,nq :“ tα P Nn0 : |α| :“ α1 ` ¨ ¨ ¨ ` αn “ mu, zα :“ zα1
1 ¨ ¨ ¨ zαnn and aα P C.

Another way of writing a polynomial P is as follows:

P pz1, . . . , znq “
ÿ

jPJ pm,nq
cjzj,

where J pm,nq :“ tj “ pj1, . . . , jmq P Nm : 1 ď j1 ď ¨ ¨ ¨ ď jm ď nu, zj :“ zj1 ¨ ¨ ¨ zjm
and cj P C. This two ways of indexing the coefficients of an homogeneous polynomial are
related by the mapping

F : Λpm,nq Ñ J pm,nq
α “ pα1, . . . , αnq ÞÑ j “ p1, α1. . ., 1, . . . , n, αm. . ., nq. (1.6)

7
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Note that cj “ aα with j “ F pαq. Whenever j “ F pαq we may say α “ αpjq is associated
to j and also j “ jpαq is associated to α. We will use the fact that the cardinal of this
index sets is

|J pm,nq| “ |Λpm,nq| “
ˆ

m` n´ 1

m

˙

. (1.7)

We refer to the elements pzαqαPΛpm,nq (equivalently, pzjqjPJ pm,nq) as the monomials.
Notice that every P P PpmCnq defines a unique sequence of coefficients that can be written
in two ways as paαpP qqαPΛpm,nq and pcjpP qqjPJ pm,nq such that

P pzq “
ÿ

αPΛ

aαpP qz
α “

ÿ

jPJ pm,nq
cjpP qzj.

Observe that aαpP q “ cjpP q for F pαq “ j.

Another very useful index set, especially exploiting the connection between polynomi-
als and multilinear forms, will be t1, . . . , num which we will denote by the abbreviation
Mpm,nq. Given j P J pm,nq there might be many i “ pi1, . . . , imq PMpm,nq such that
for some permutation σ P Sm it holds j “ σpiq :“ piσp1q, . . . , iσpmqq. For every j P J pm,nq
we consider the equivalence class

rjs :“ ti PMpm,nq : j “ σpjq with σ P Smu ,

and by |rjs| we denote the cardinal of rjs. Notice that for any i P rjs with σ P Sm such
that j “ σpiq we have zj “ zi “ pzσp1q, . . . , zσpnqqj. Given α P Λpm,nq, its cardinal may

be calculated as |rαs| :“ m!
α! where α! :“ α1! ¨ ¨ ¨αn!. Notice that, if F pαq “ j it holds

|rjs| “ |rαs|.

In the study of some spaces of homogeneous polynomials over Banach sequence spaces
of infinite dimension it will be very useful to consider the sets

J pmq :“
ď

ně1

J pm,nq “ tj “ pj1, . . . , jmq P Nm : 1 ď j1 ď ¨ ¨ ¨ ď jmu ,

and

Λpmq :“
ď

ně1

Λpm,nq “
!

α P NpNq0 : |α| “ m
)

.

The following is a description of homogeneous polynomials over Banach sequence spaces
depending on its finite dimensional projections.

Remark 1.2.4. Let X be a Banach sequence space, every P P PpmXq defines two unique
coefficient sequences paαpP qqαPΛpmq and pcjpP qqjPJ pmq such that for every n P N and z P Cn
it holds

Pnpzq “
ÿ

αPΛpm,nq

aαpP qz
α “

ÿ

jPJ pm,nq
cjpP qzj.

Proof. For X a Banach sequence space and P P PpmXq, by Corollary 1.2.3, we may con-
sider its finite dimensional projections pPnqně1. For each n P N the polynomial Pn defines
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unique coefficient sequences paαpPnqqΛpm,nq and pcjpPnqqjPJ pm,nq. Notice that given two pos-
itive integers n ă N it holds PN ˝πn “ Pn, which implies paαpPN qqΛpm,nq “ paαpPnqqΛpm,nq
and pcjpPN qqjPJ pm,nq “ pcjpPnqqjPJ pm,nq for every n ă N . This tells the dependence on n of
the coefficient sequences of Pn is illusory, thus we may write paαpPnqqΛpm,nq “ paαpP qqΛpm,nq
and pcjpPnqqjPJ pm,nq “ pcjpP qqjPJ pm,nq. Finally for any n P N given z P Cn we have

Pnpzq “
ÿ

αPΛpm,nq

aαpP qz
α “

ÿ

jPJ pm,nq
cjpP qzj,

as we wanted.

1.2.1 Symmetric multilinear maps

The connection between polynomial over Banach spaces and multilinear maps is clearly
very deep. Indeed, for every polynomial there must be a multilinear map behind but, there
might be more than one defining the same polynomial. For example, the polynomial

P : C2 Ñ C
pz1, z2q ÞÑ z2

1 ` 2z1z2 ` z
2
2 ,

may be given by two different bilinear map T1, T2 P Lp2C2q where

T1ppx1, x2q, py1, y2qq “ x1y1 ` 2x1y2 ` x2y2,

T2ppx1, x2q, py1, y2qq “ x1y1 ` x1y2 ` y1x2 ` x2y2.

We say a multilinear form T P LpmX;Y q is symmetric if, given any permutation σ P Sm
and any m-tuple px1, . . . , xmq P X

m it holds

Tσpx1, . . . , xmq :“ T pxσp1q, . . . , xσpmqq “ T px1, . . . , xmq.

Notice that for any σ P Sm we have

}Tσ}LpmX;Y q “ }T }LpmX;Y q. (1.8)

Given any T P LpmX;Y q we consider its symmetrization T s P LpmX;Y q given by

T s : Xm Ñ Y

px1, . . . , xmq ÞÑ
1

m!

ÿ

σPSm

Tσpx1, . . . , xmq,

which is again an m-linear map which is symmetric. In fact we may define the symmetriza-
tion operator

πs : LpmX;Y q Ñ LpmX;Y q

T ÞÑ T s.
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For any symmetric map T P LpmX;Y q, as T “ Tσ for every σ P Sm and cardpSmq “ m!
we have

T s “
1

m!

ÿ

σPSm

Tσ “ T.

Also given any T P LpmX;Y q and by equation (1.8), it holds

}πspT q}LpmX;Y q “ }
1

m!

ÿ

σPSm

Tσ}LpmX;Y q

ď
1

m!

ÿ

σPSm

}Tσ}LpmX;Y q

“
1

m!

ÿ

σPSm

}T }LpmX;Y q “ }T }LpmX;Y q.

By the previous remarks it turns out πs is a projection. We call the subspace given by the
range of projection the space of symmetric bounded m-linear forms and will be denote it
by LspmX;Y q :“ πspLpmX;Y qq.

Notice that we may define the surjective operator

p: LspmX;Y q Ñ PpmX;Y q

T ÞÑ pT :“ T ˝∆m.

Given P P PpmX;Y q the polarization formula gives a unique symmetric associatedm-linear
form in LpmX;Y q, defined for any px1, . . . , xmq P X

m by

qP px1, . . . , xmq :“
1

2mm!

m
ÿ

i“1

ÿ

εi“˘1

ε1 ¨ ¨ ¨ εmP pε1x1 ` ¨ ¨ ¨ ` εmxmq.

Remark 1.2.5. For P P PpmCnq, given α P Λpm,nq and F pαq “ j P J pm.nq, for every
i “ pi1, . . . , imq P rjs it holds

aαpP q “ cjpP q “ qP pei1 , . . . , eimq|rjs|,

Proof. Given j P J pm.nq and i P rjs there is some σ P Sm such that j “ σpiq. As qP is
symmetric it follows

qP pej1 , . . . , ejmq “
qPσpej1 , . . . , ejmq “

qP pei1 , . . . , eimq. (1.9)

Notice that Mpm,nq “
Ť

jPJ pm,nqrjs is a partition. Given z P Cn and using equation (1.9)
we have

P pzq “ qP pz, . . . , zq “
ÿ

iPMpm,nq

qP pei1 , . . . , eimqzi

“
ÿ

jPJ pm,nq

ÿ

iPrjs

qP pej1 , . . . , ejmqzj “
ÿ

jPJ pm,nq
|rjs| qP pej1 , . . . , ejmqzj.

As there is a unique sequence of coefficients for P we have what we wanted to prove.
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The formula in (1.2.1) defines the linear operator

q: PpmX;Y q Ñ LspmX;Y q

P ÞÑ qP .

The following theorem states that both operators p̈ and q̈ give continuous isomorphism
between LspmX;Y q and PpmX;Y q being one the inverse of the other. In particular for
every homogeneous polynomial there is only one symmetric multilinear form associated to
it.

Theorem 1.2.6 (Proposition 1.8 in [Din99]). Given T P LspmX;Y q and P “ T ˝ ∆m,
then T “ qP and

}P }PpmX;Y q ď }T }LpmX;Y q ď
mm

m!
}P }PpmX;Y q.

The following result compares the norm of a homogeneous polynomial with the norm
of its associated symmetric multilinear form with some precise restriction on the elements.

Theorem 1.2.7 (Theorem 1 in [Har72]). Given P P PpmX;Y q and qP P LpmX;Y q the
symmetric m-linear form associated to P , for any k P t0, 1, . . . ,mu it holds

sup
u,vPBX

} qP pu, . . . , u
looomooon

m´k

,

k
hkkikkj

v, . . . , vq}Y ď
pm´ kq!k!mm

pm´ kqm´kkkm!
}P }PpmX;Y q

1.3 Holomorphic functions

Now we center the attention on one of the main topics of this thesis, holomorphic functions
over Banach spaces. We will define them, discuss some of their most important properties
and their connection with the polynomials over Banach spaces.

Given X,Y Banach spaces over the complex field and U Ă X an open set we say a
function f : U Ñ Y is Gâteaux-holomorphic if, given any triplet ξ P U, η P X,φ P Y 1, the
one complex variable mapping

λÑ φ ˝ fpξ ` ληq,

is defined and holomorphic in some neightborhood of 0 (in the traditional sense for a func-
tion of one complex variable). If f : U Ñ Y is Gâteaux-holomorphic and continuous we
say that mapping is holomorphic. As in the one dimentional case we will call a function
holomorphic on the whole space X, entire. To denote the vector space of all the holomor-
phic functions over some open set U Ă X with values in Y we use HpU ;Y q (or HpUq if
Y “ C). The set HpU ;Y q is in fact a C-vector space.

The following theorem condenses three ways of understanding holomorphic functions
over Banach spaces. For a proof of this fact and a deep insight on the theory of holomorphic
function over Banach spaces we recommend [Din99] and [Muj10].

Theorem 1.3.1. Given X,Y Banach spaces over the complex field, U Ă X an open set
and f : U Ñ Y they are equivalent:

11



Chapter 1. Preliminaries

• f is holomorphic.

• f is Fréchet differentiable for every x P U , i.e., it exists dfpxq P LpX,Y q such that

lim
hÑ0

fpx0 ` hq ´ fpx0q ´ dfpxqphq

}h}X
“ 0.

• For every x P U there is r “ rpxq ą 0 such that in Brpx0q the Taylor series of f

converges uniformly, i.e., there are dmfpx0q

m! P PpmX,Y q for every m P N such that

fpxq “
ÿ

mě1

dmfpx0q

m!
px´ x0q ` fpx0q,

for every x P Brpx0q.

Given a holomorphic function f : U Ñ Y and a point x0 P U , we will also use
Pmpfqpx0q “

dmfpx0q

m! (or simply Pmpfq when the point x0 is clearly determined) for the
m-homogeneous part in the Taylor expansion.

From the third equivalence on Theorem 1.3.1 it becomes clear the deep connection
between holomorphic functions and homogeneous polynomial in Banach spaces. We will
exploit this relation all along this text. In this sense, a fundamental tool working with
holomorphic function will be (as in the one dimensional case) the Cauchy integral formula.
In this case, this formula states that, given a holomorphic function f P HpU ;Y q, and
element z P U Ă X and other x P X it holds

dmfpzq

m!
pxq “

1

2πi

ż

|λ|“r

fpz ` λxq

λm`1
dλ, (1.10)

for every m P N0, where r ą 0 is a radius such that z ` λx P U for every |λ| ď r.
There are many families of holomorphic functions considered in the literature, here we

present those that we will study throughout the thesis. The first example is an already
known family, given X,Y complex Banach spaces, for every m P N we consider the family
given by the m-homogeneos polynomials PpmX;Y q. The fact that it actually is a subset
of the the of holomorphic functions from X to Y , i.e.,

PpmX;Y q Ă HpX;Y q,

becomes clear from Theorem 1.3.1.
For any bounded set U Ă X we denote by H8pU ;Y q to the subset of HpU ;Y q given

by the bounded holomorphic function from U to Y . The norm

}f}H8pU ;Y q :“ }f}U “ sup
zPU

}fpzq}Y ,

makes
´

H8pU ;Y q, } ¨ }H8pU ;Y q

¯

a Banach space. We will be especially interested in

H8pBX ;Y q, in particular for Y “ C, in this case we use the notation H8pBXq :“

12



1.3. Holomorphic functions

H8pBX ;Cq. Next lemma states that, for any m P N0, the projection

H8pBX ;Y q Ñ PpmX;Y q

f Ñ
dmfp0q

m!
,

is a contraction.

Lemma 1.3.2. For a couple of complex Banach spaces X,Y and an open balanced set
U Ă X set it holds

›

›

›

›

dmfp0q

m!

›

›

›

›

U

ď }f}U ,

for every m P N0

The idea of the proof of Lemma 1.3.2 is essentially to use Cauchy integral formula
(1.10).

Finally we will consider HbpX;Y q Ă HpH;Y q the set of entire functions of bounded
type, i.e., the set of all entire functions over X with image on Y which are bounded over all
bounded subsets of X. This set has a vector spaces structure. Even more, for f P HBpX;Y q
and any positive integer n, qnpfq :“ }f}nBX defines a seminorm. The space HbpX;Y q is a
Frchet space considering the family of seminorms tqn : n P Nu. A mapping f is an entire
functions of bounded type if and only if

lim
mÑ8

›

›

›

›

dmfp0q

m!

›

›

›

›

1{m

BX

“ 0, (1.11)

(see [Muj10, Corollary 7.4]) and, for every r ą 0, prpfq :“
ÿ

mě0

rm
›

›

›

›

dmfp0q

m!

›

›

›

›

BX

is a semi-

norm in HbpX;Y q. The family of seminorms tpr : r ą 0u gives in HbpX;Y q the same
Fréchet space structure. When we have Y “ C we will just write HbpXq to refer to this
space.

In the finite dimensional case, a complex function is holomorphic on an open set if and
only if it is analytic there.

Theorem 1.3.3. Given an open set U Ă Cn any mapping f : U Ñ C is holomorphic
on U if and only if is analitic on U . In this case, given z P U , there are r1, . . . , rn ą 0
(depending on z) such that

fpwq “
ÿ

αPNn0

aαpfqpzqpw ´ zq
α.

for every w P z ` pr1, . . . , rnq ¨ Dn. Even more, its coefficients may be calculated by the
formula

aαpfqpzq “
1

p2πiqn

ż

|ξ1´z1|“ρ1

¨ ¨ ¨

ż

|ξn´zn|“ρn

fpξ1, . . . , ξnq

pξ1 ´ z1q
α1`1 ¨ ¨ ¨ pξn ´ znqαn`1

dξ. (1.12)

13



Chapter 1. Preliminaries

1.4 Complex interpolation

The complex interpolation method developed by Calderón is a very useful tool in the study
of bounded linear operators between Banach spaces and, in general, inequalities in these
spaces. This method allows to get information about the linear operators between a family
of spaces by knowing how these operators behave in the extreme spaces of the family.

We will say that two Banach spaces X,Y form an interpolation couple if there is a
Hausdorff topological vector space Λ and injective and continous operators

iX : X ãÑ Λ, y iY : Y ãÑ Λ.

Whenever pX,Y q is an interpolation couple we consider the Banach space given by their
sum

X ` Y :“
!

iXpxq ` iY pyq : x P X, y P Y
)

with the norm

}u}X`Y :“ inft}x}X ` }y}Y : x P X, y P Y, u “ iXpxq ` iY pyqu;

and the Banach spaces given by their intersection

X X Y :“ iXpXq X iY pY q,

with the norm }u}XXY :“ max
!

}i´1
X puq}X , }i

´1
Y puq}Y

)

.

The inclusion

ι : X X Y ãÑ X ` Y,

u ÞÑ u,

is an isometry, this allows to define an intermediate space E for the interpolation couple
pX,Y q as any Banach space such that X X Y Ă E Ă X ` Y as Banach spaces (i.e.,
}u}X`Y ď }u}E ď }u}XXY ). An interpolation space between X and Y is any intermediate
space E such that, given T P LpX ` Y q fulfilling T |X P LpXq and T |Y P LpY q, it holds
that T |E P LpEq.

To define complex interpolation we will use the complex strip B :“ tz “ a ` bi : 0 ă
a ă 1u. Let pX,Y q be an interpolation couple, we say a function f : B Ñ X ` Y fulfills
the p˚q conditions if

1. f is continuous on B;

2. f is holomorphic on B;

3. t ÞÑ fpitq is continuous and bounded from R to X, t ÞÑ fp1 ` itq continuous and
bounded from R to Y .

14



1.5. Dirichlet series

Consider the Banach space given by the complex functions attaining the p˚q conditions,
i.e.,

FpX,Y q :“
!

f : B Ñ X ` Y : fulfilling the p˚q conditions
)

,

with the norm given by }f}FpX,Y q :“ maxtsup
tPR
}fpitq}X , sup

tPR
}fp1` itq}Xu.

Given 0 ă θ ă 1 consider

NθpX,Y q “
!

f P FpX,Y q : fpθq “ 0
)

,

which is a closed subspace of FpX,Y q. The intermediate space given by the complex
interpolation method in θ is given by

rX,Y sθ :“
FpX,Y q
NθpX,Y q

,

endowed with the quotient norm.
Given 1 ď p0, p1 ď 8 a classic result of Riesz and Thorin implies that for every

0 ă θ ă 1 it holds
rLp0pU, µq, Lp1pU, µqsθ “ Lppµq, (1.13)

isometrically, where 1
p :“ 1´θ

p0
` θ

p1
for every pU, µq measure space.

Theorem 1.4.1 (Multilinear interpolation Theorem). For m P N let pX1
0 , X

1
1 q, . . . , pX

m
0 , X

m
1 q, pY0, Y1q

be interpolation couples and T P LpX1
0 , . . . , X

m
0 ;Y0q X LpX1

1 , . . . , X
m
1 ;Y1q. Then for every

θ P p0, 1q it holds T P LprX1
0 , X

1
1 sθ, . . . , rX

m
0 , X

m
1 sθ; rY0, Y1sθq with

}T }LprX1
0 ,X

1
1 sθ,...,rX

m
0 ,Xm

1 sθ;rY0,Y1sθq
ď }T }1´θLpX1

0 ,...,X
m
0 ;Y0q

}T }θLpX1
1 ,...,X

m
1 ;Y1q

.

1.5 Dirichlet series

To understand the thesis results we do not need this section. Nevertheless it is necessary
to understand in a deeper way its motivation. It is included to give the definitions and
background involved in some historical facts mentioned in Chapter 2.

Given sequence panqnPN Ă C we may define formally the induced Dirichlet series

D :“
ÿ

ně1

an
1

ns
.

We will denote D to the set of all Dirichlet series. Again formally we may define linear
structure on D, namely

ÿ

ně1

an
1

ns
`

ÿ

ně1

bn
1

ns
:“

ÿ

ně1

pan ` bnq
1

ns
,

λ

˜

ÿ

ně1

an
1

ns

¸

:“
ÿ

ně1

pλanq
1

ns
,

15
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and an algebraic structure given by product
˜

ÿ

ně1

an
1

ns

¸˜

ÿ

ně1

bn
1

ns

¸

:“
ÿ

ně1

˜

ÿ

km“n

akbm

¸

1

ns

which is usually called “Dirichlet” multiplication. These series play a key role in number
theory. The most prominent example of a Dirichlet series is the well known Riemann
ζ-function

ζ “
ÿ

ně1

1

ns
.

For σ P R it will be useful the notation rRe ą σs :“ tz P C : Repzq ą σu, rRe ă σs
and rRe “ σs are defined analogously. Given a Dirichlet series D and s P C such that the

complex series Dpsq “
ÿ

ně1

an
1

ns
converges it is well known that Dps1q also converges for

every s1 P rRe ą Repsqs (see [DGMSP19, Theorem 1.1]). We may then consider, given
D P D, its Abscissa of convergence to be rRe “ σcpDqs where

σcpDq :“ inf tσ P R : D converges in rRe ą σsu .

The following classic result of Dirichlet series theory is the first step in the study of this
objects from an analytical point of view.

Theorem 1.5.1. Let D be a Dirichlet series not everywhere divergent. Then it converges
in rRe ą σcpDqs and diverges on rRe ă σcpDqs. Even more, the mapping

D : rRe ą σcs Ñ C

s ÞÑ Dpsq “
ÿ

ně1

an
1

ns
,

is holomorphic.

Notice that, for D “
ÿ

ně1

an
1

ns
, its region of absolute convergence is exactly the region of

convergence for
ÿ

ně1

|an|
1

ns
. This gives that the region of absolutely convergence for a given

Dirichlet series is again half plane. We may consider the abscissa of absolute convergence
for D P D to be rRe “ σapDqs where

σapDq :“ inf tσ P R : D converges absolutely in rRe ą σsu .

It is plain that σcpDq ď σapDq for every D P D.
A third abscissa plays an important role in this part of the theory of Dirichlet series.

Notice that given D P D we may look upon the sequence of functions defined by its partial
sums

pDN qNPN :“

˜

N
ÿ

n“1

an
1

ns

¸

NPN
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1.5. Dirichlet series

and study the region of uniform convergence of this sequence. In this way it arises the
abscissa of uniform convergence for some D P D as rRe “ σupDqs where

σupDq :“ inf tσ P R : pDN qNPN converges absolutely to D in rRe ą σsu .

It is not hard to see that σcpDq ď σupDq ď σapDq for every D P D.
Notice that the half-planes of convergence, uniform convergence and absolute conver-

gence are the Dirichlet series version of the disc of convergence, uniform convergence and
absolute convergence for Taylor series. It is a classic result that in the Taylor series case
all of those disks are the same. Some natural questions arise trying to understand this
approach to the Dirichlet series,

• Will the half planes of different kind of convergence be always the same?

• If not, how big is the distance between the abscissas?

For a certain Dirichet series all of them may coincide but in general, they don’t. Take
for example D̃ “

ř

ně1p´1qnn´s. This series converges for rRe ą 0s but σapD̃q ą 1 so

σapD̃q ´ σcpD̃q ě 1. On the other hand, given D “
ř

ně1 ann
´s with σcpDq ă 8, for

s0 “ σ0 ` it P rRe ą σcpDqs as Dps0q converges p|an|n
´σ0qně1 is bounded by some K ą 0.

Given any ε ą 0 we have

ÿ

ně1

ˇ

ˇ

ˇ

ˇ

an
1

ns0`1`ε

ˇ

ˇ

ˇ

ˇ

“
ÿ

ně1

|an|
1

nσ0`1`ε
ď K

ÿ

ně1

1

n1`ε
ă 8.

Then we have σapDq ď σcpDq ` 1. This proves the following theorem.

Theorem 1.5.2. sup
DPD

σapDq ´ σcpDq “ 1.

As we have seen the convergence regions for Dirichlet series have a new behaviour with
respect to Taylor series in this sense, and it is worth studying it.

In the early years of the 20th century Harald Bohr began a study of the Dirichlet series.
In particular he was very interested in determining the size of the gap between the regions
of convergence, uniform convergence and absolute convergence. With this general problem
in mind he developed a number of tools that allowed him to prove that

sup
DPD

σupDq ´ σcpDq “ 1.

The last of the gaps,
S :“ sup

DPD
σapDq ´ σupDq,

historically required much more effort to determine. The first step to understand this
problem was to give the Dirichlet series a Banach space structure. Consider

H8 :“ tD P D : σcpDq ď 0u Ă HprRe ą 0sq,

this results a Banach algebra endowed with the norm given by

}D}H8 :“ sup
sPrReą0s

|Dpsq|.

17
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Proposition 1.5.3 (Proposition 1.24 in [DGMSP19]). S “ sup
DPH8

σapDq.

One of the main ideas involved in solving this problem consists in the use of the so-
called Bohr transform: a way that Bohr found to build a bridge between the Dirichlet
series and the holomorphic functions of many infinite variables. This transform is defined
in the following way

B : H8pBc0q Ñ H8 (1.14)

f ÞÑ
8
ÿ

n“1

ann
´s,

where, given n “ pα1
1 ¨ ¨ ¨ pαNN written in terms of its prime number decomposition and

ppiqiPN is the sequence of ordered prime numbers,

an :“
1

p2πiqN

ż

|z1|“r
¨ ¨ ¨

ż

|zN |“r

fpz1, . . . , zn, 0, . . .q

zα1`1
1 ¨ ¨ ¨ zαN`1

N

dz1 ¨ ¨ ¨ dzN .

In other words an “ cαpfq where n “ pα :“ pα1
1 ¨ ¨ ¨ pαNN .

Its inverse is called the Bohr lift

B´1 : H8 Ñ H8pBc0q
8
ÿ

n“1

ann
´s ÞÑ

ÿ

αPNpNq0

apαz
α,

where again pα :“ pα1
1 ¨ ¨ ¨ pαNN for every α “ pα1, . . . , αN , 0, . . .q P N

pNq
0 .

Theorem 1.5.4. The Bohr transform is an isometric ismorphism between the Banach
algebras H8 and H8pBc0q.

As the m-homogeneous polynomial are crucial to understand the holomorphic func-
tions, this point of view suggests the definition of the m-homogeneous Dirichlet polyno-
mial. Recall that, for every integer n, Ωpnq is the numbers of prime divisors counted with
multiplicity. The set of m-homogeneous Dirichlet series is defined by

Dm :“

#

ÿ

n

ann
´s P D : an ‰ 0 ùñ Ωpnq “ m.

+

An intermediate problem in the way to determine S is to understand its m-homogenous
version, the gap

Sm :“ sup
DPDm

σapDq ´ σupDq

To give Banach structure to Dm we define the subspace of m-homogeneous Dirichlet
series which converge on the half-plane rRe ą 0s as

Hm8 :“ Dm XH8 “

#

ÿ

n

ann
´s P H8 : an ‰ 0 ùñ Ωpnq “ m,

+

endowed with the norm given in H8.
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1.5. Dirichlet series

Theorem 1.5.5. The Bohr transform is an isometric Banach space isomorphism between
Hm8 and Ppm`8q.

A very useful tool to establish the value of Sm will be the following m-homogeneous
version of Proposition 1.5.3.

Proposition 1.5.6. Sm “ sup
DPHm

8

σapDq.
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Chapter 2

Coefficients summability

In 1930 Littlewood [Lit30] proved his celebrated (and nowadays classical) 4{3-inequality.
It states that, given a bilinear form B : Cn ˆ Cn Ñ C, the following holds

˜

n
ÿ

i,j“1

|Bpei, ejq|
4{3

¸3{4

ď
?

2}B}Lp2`n8q.

Even more, he proved that the exponent 4{3 cannot be improved, i.e., for every r ă 4{3 it
is impossible to have an analogous inequality with a constant independent of the number
of variables. This was the first of many “coefficient summing inequalities” of this kind.
Those inequalities proved to be very useful to solve problems in a wide variety of branches
of mathematics.

In the early years of the 20th century Harald Bohr [Boh13] began a study of the theory
of Dirichlet series. In particular he was very interested in determining the size of the gap
between the regions where those mappings converge in different ways. One of the hardest
and main problems he presented in this field was to determine the biggest possible gap
between the abscissa of uniform convergence σupDq and absolute convergence σapDq for
Dirichlet series,

S “ sup
DPD

σapDq ´ σupDq,

where D stand for the set of Dirichlet series. Bohr managed to show that S ď 1
2 , among

other many contributions to this theory, but he could not give the precise value of S.

He was able to translate this problem to the language of holomorphic functions over
infinitely many variables by the so called Bohr transform. In this context, an intermediate
problem, is to determine the size of the gap for m-homogeneous Dirichlet series

Sm “ sup
DPDm

σapDq ´ σupDq.

With this problem in mind Bohnenblust and Hille reached a novel generalization of the
4{3-inequality [BH31] that allowed them to give the final value for the gap.
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2.1 Some summability results

Bohnenblust and Hille were interested in finding the value of the gap between the abscissa
of uniform and absolute convergence for Dirichlet series. To do so they showed a sufficiently
good way to control the sum of the coefficients of any m-linear form to the power 2m

m`1 by
its uniform norm in `8.

Theorem 2.1.1 (Multilinear Bonhenblust-Hille inequality). Given m,n P N, for every
m-linear form T : Cn ˆ ¨ ¨ ¨ ˆ Cn Ñ C there is Cm ą 0 depending only on m (not on n)
such that

˜

ÿ

1ďi1,...,imďn

|T pei1 , . . . , eimq|
2m
m`1

¸
m`1
2m

ď Cm}T }Lpm`n8q. (2.1)

Moreover the exponent 2m
m`1 is optimal.

In general, fixed m,n P N and 1 ď r ă 8, we may consider the constant Cr,mpnq ą 0
such that for every m-linear form T : Cn ˆ ¨ ¨ ¨ ˆ Cn Ñ C it holds

˜

ÿ

1ďi1,...,imďn

|T pei1 , . . . , eimq|
r

¸1{r

ď Cm,rpnq}T }Lpm`n8q.

This constant Cm,rpnq may depend on m and r but also on the number of complex variables
n. In Theorem 2.1.1 optimal means that if Cm,rpnq “ Cm,r does not depend on n then
r ě 2m

m`1 . In other words, for r ă 2m
m`1 the dependence on n of Cm,r becomes explicit, in

particular it holds Cm,rpnq Ñ 8 when the number of variables n goes to infinity.

We denote by BHmult
m the best constant Cm in Theorem 2.1.1. The original proof due

to Bohnenblust and Hille gives the bound Bmult
m ď m

m`1
2m 2

m´1
2 .

In order to reach the value of the gap between uniform and absolute convergence in
Dirichlet series, Bohnenblust and Hille needed a polynomial version of this inequality. To
obtain that inequality they developed of polarization and from Theorem 2.1.1 achieved the
following result.

Theorem 2.1.2 (Polynomial Bonhenblust-Hille inequality). Given m,n P N, for every
homogeneous polynomial P P PpmCnq with coefficients paαpP qqαPNn0 there is a constant
Cm ą 0 depending only on m such that

¨

˝

ÿ

αPΛpm,nq

|aαpP q|
2m
m`1

˛

‚

m`1
2m

ď Cm}P }Ppm`n8q. (2.2)

Moreover, 2m
m`1 is optimal.
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Proof. Let qP be the symmetric m-linear form associated to P . By Theorem 2.1.1, Re-
mark 1.2.5 and using the polarization formula in Theorem 1.2.6 it holds

¨

˝

ÿ

αPΛpm,nq

|aαpP q|
2m
m`1

˛

‚

m`1
2m

“

¨

˝

ÿ

jPJ pm,nq
| qP pej1 , . . . , ejmq|rjs||

2m
m`1

˛

‚

m`1
2m

“

¨

˝

ÿ

jPJ pm,nq

|rjs|
2m
m`1

|rjs|

ÿ

iPrjs

| qP pei1 , . . . , eimq|
2m
m`1

˛

‚

m`1
2m

ďm!
m´1
m`1

˜

ÿ

1ďi1ď...ďimďn

| qP pei1 , . . . , eimq|
2m
m`1

¸
m`1
2m

ďmmBHmult
m } qP }Lpm`n8q ď mm`m`1

2m 2
m´1

2 }P }Ppm`n8q ,

where we used |rjs| ď m! ď mm for every j P J pm,nq and the previously mentioned bound
for BHmult

m . We will later give examples of polynomials that prove the optimality of the
exponent 2m

m`1 .

As in the multilinear version, in Theorem 2.1.2 optimal means that, if there exists some
Cr,mpnq ą 0 such that for every P P PpmCnq it holds

¨

˝

ÿ

αPΛpm,nq

|aαpP q|
r

˛

‚

1{r

ď Cm,rpnq}P }Ppm`n8q,

and Cm,rpnq “ Cm,r does not depend on n then r ě 2m
m`1 . As before, for r ă 2m

m`1 the
dependence on the number of variables becomes explicit and

Cm,rpnq Ñ 8 as nÑ8,

as we will show later in this chapter. We denote by BHpol
m to the best constant Cm in

Theorem 2.1.2. Many efforts have been made to find good bounds for this constant. From

Theorem 2.1.2 we have BHpol
m ď mm`m`1

2m 2
m´1

2 . This is not even close to the best known
bound for this constant, one of the most important contribution to the study of it is done
in [DFOC`11] where the authors prove that

BHpol
m ď

ˆ

1`
1

m´ 1

˙m´1?
m2

m´1
2 .

Thanks to Theorem 2.1.2, the fact that the Bohr transform is an isometry between
Hm8 and Ppm`8q and the characterization of Sm “ supDPHm

8
σapDq, Bonhenblust and Hille

were able to show that

Sm “
m´ 1

2m
,
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Chapter 2. Coefficients summability

and then as Sm ď S ď 1
2 for every m P N, they concluded

S “ 1

2
.

The Bohnenblust-Hille inequality in Theorem 2.1.2 explores the best number 1 ď r ď 8
such that the space of m-homogeneous polynomials bounded on the ball of `8 may support
the `r-norm of the coefficients. Notice that, given P P Ppm`8q, its coefficients sequence
paαpP qqαPΛpmq may have infinitely nonzero elements and, given 1 ď r ď 8 it may or may
not be in the space

`rpΛpmqq :“

$

’

&

’

%

paαqαPΛpmq Ă C :

¨

˝

ÿ

αPΛpmq

|aα|
r

˛

‚

1{r

ă 8

,

/

.

/

-

.

A qualitative way of reading Theorem 2.1.2 is the following corollary

Corollary 2.1.3. Let m P N, for every m-homogeneous polynomial P P Ppm`8q it holds
that paαpP qqαPΛpmq P ` 2m

m´1
pΛpmqq. Even more, for every 1 ď r ă 2m

m´1 there is some

P P Ppm`8q such that paαpP qqαPΛpmq R `rpΛpmqq.

Now we will simply prove the first statement of Corollary 2.1.3 using Theorem 2.1.2. For
the second statement we will need to show the existence of some polynomial in Ppm`8q with
unbounded `r norm for its coefficients. In the original proof of their result, Bohnenblust
and Hille constructed a family of polynomials that fulfill that condition. We will follow
another path, which uses probability theory to assure the existence of some kind of extreme
polynomials. Those will allow us to get a better understanding of a more general problem
and we will present them latter in Subsection 2.2.1.

Proof of the first statement in Corollary 2.1.3. For P P Ppm`8q consider its composition
with the projection to the first n coordinates Pn “ P ˝ πn P PpmCnq. By Theorem 2.1.2,
using that }Pn}Ppm`n8q ď }P }Ppm`8q (by Corollary 1.2.3) and Remark 1.2.4 we have

¨

˝

ÿ

αPΛpm,nq

|aαpP q|
2m
m`1

˛

‚

m`1
2m

ď Cm}Pn}Ppm`n8q ď Cm}P }Ppm`8q,

where Cm ą 0 and does not depend on n. Taking the limit on n going to 8 we have what
we needed.

Now it seems natural to ask if we can change the space `8 in Corollary 2.1.3 with
other `p space and get a similar result. This is the first of a number of questions we will
try to answer in this chapter. As the trigger for the Bonhenblust-Hille inequality was
the Littlelwood 4{3-inequality, the first attempt to answer the previous question was a
generalization of Littlelwood’s result given by the legendary couple he made with Hardy

24



2.1. Some summability results

[HL34]. This generalization considered bilinear forms B : Cn ˆ Cn Ñ C and studied
inequalities of the form

˜

n
ÿ

i,j“1

|Bpei, ejq|
q

¸1{q

ď K}B}Lp`np1 ,`
n
p2
q.

They were particularly interested in the conditions on 1 ď q, p1, p2 ď 8 to guarantee the
existence of K ą 0 independent of n. A half of century latter the bilinear inequalities of
Hardy and Littlelwood inspired Praciano-Pereira [PP81] to attack the multilinear version
of that problem. This problem was also studied by Dimant and Sevilla-Peris in [DSP16].

Given an m-homogeneous polynomial P pzq “
ř

αPΛpm,nq aαz
α in n variables we denote

the `r-norm of its coefficients by

|P |q :“
´

ÿ

αPΛpm,nq

|aα|
q
¯1{q

.

Another norm, related to the coefficients is the so-called Bombieri q-norm defined in
[BBEM90]:

rP sq :“
´

ÿ

αPΛpm,nq

` α!

m!

˘q´1
|aα|

q
¯1{q

.

The relation between the these coefficients-norms is given by the following inequalities (see
[BBEM90]):

pm!q
1
q
´1
|P |q ď rP sq ď |P |q. (2.3)

For 1 ď p, q ď 8 we will say it holds a polynomial Hardy-Littlewood type inequality
whenever, given m,n P N there is some Cm,p,q ą 0 independent of n such that

|P |q ď Cm,p,q}P }Ppm`np q, (2.4)

for every P P PpmCnq. Whenever a Hardy-Littlewood inequality holds for 1 ď p, q ď 8
we say that pp, qq forms a Hardy-Littlewood pair.

The following lemma, which is an immediate consequence of the Cauchy integral for-
mula, will be very important in the development of Theorem 2.1.7 which is a key tool for
this thesis. It will also be useful to notice pp,8q forms a Hardy-Littlewood pair for every
1 ď p ď 8. For some 1 ď p ď 8 this will be the only possible Hardy-Littlewood pair.

Lemma 2.1.4. Given 1 ď p ď 8, m,n P N and α P Λpm,nq, for every P P PpmCnq it
holds

|aαpP q| ď

ˆ

mm

αα

˙1{p

}P }Ppm`np q. (2.5)

Proof. Given u “ 1
m1{pα

1{p P B`np by Cauchy integral formula in equation (1.10) we have

|aαpP q| ď
1

p2πiqn

ż

|z1|“u1

¨ ¨ ¨

ż

|zn|“un

|P pzq|

|zα1`1
1 ¨ ¨ ¨ zαn`1

n |
dz

ď
1

uα1
1 ¨ ¨ ¨uαnn

}P }Ppm`np q ď

ˆ

mm

αα

˙1{p

}P }Ppm`np q,
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Chapter 2. Coefficients summability

as z P B`np for every |z| “ u.

In some problems it will be necessary to understand, given a multi-index α P ΛpM,nq,

how to bound MM

αα . For example, if n ěM we can pick

α “ p1, . . . , 1
loomoon

M

, 0, . . . , 0q,

in this case MM

αα “ MM . On the other hand if α “ pM, 0, . . . , 0q a simple calculation tells

us that MM

αα “ 1. In general αα ě 1 for every α P ΛpM,nq, then

sup
αPΛpM,nq

MM

αα
ďMM , (2.6)

and the equality holds when n ěM . Now by Lemma 2.1.4 and equation (2.6) we have for
every P P PpmCnq

|P |8 ď mm}P }Pp`np q. (2.7)

Remark 2.1.5. For 1 ď p ď m there is no q ă 8 such that pp, qq is a Hardy-Littlelwood
pair.
Indeed, taking P “

řn
j“1 z

m
j , for every z P Cn as m ď p it holds

|P pzq| ď
n
ÿ

j“1

|zj |
m “ }z}m`m ď }z}

m
`p ,

then we have
|P |q “ n

1
q and }P }Ppm`np q ď 1.

This proves that there is no constant independent of n as in (2.4).

The following result gathers [DSP16, Proposition 4.1] and [PP81, Theorem A and
Theorem B] completing the description of the Hardy-Littlelwood type inequalities.

Theorem 2.1.6 (Polynomial Hardy-Littlewood type inequalities). Fixed m,n P N and
m ă p ď 8, there is a constant Cm,p ą 0 depending only on m and p (not on n) such that
for every m-homogeneous polynomial in n-complex variables P we have:

piq |P | p
p´m

ď Cm,p }P }Ppm`np q for m ď p ď 2m,

piiq |P | 2mp
mp`p´2m

ď Cm,p }P }Ppm`np q for 2m ď p.

Again the exponents p
p´m and 2mp

mp`p´2m in the above inequalities are the best possible.
Observe that, in the limit case (p “ 8) we recover the classical Bohnenblust-Hille exponent
2m
m`1 .

By Remark 2.1.5 and Theorem 2.1.6 we have a full description of the condition of exis-
tence of Hardy-Littlelwood inequalities. Nevertheless we may get more useful inequalities
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2.1. Some summability results

modifying the coefficients norm on the leftmost side of the inequalities or accepting a wider
variety of spaces to take the uniform norm on the right side. One example of this kind of
modification on the left side is next theorem due to Bayart, Defant and Schlüters [BDS19].
Here we present a slight modification of their result. This will allow us to have better
bounds in future applications.

Theorem 2.1.7 (Bayart-Defant-Shlüters inequality). Let 1 ď p ď 8, m,n P N and
P P PpmCnq. Then for each j P J pm´ 1, nq with associated multi-index αpjq P Λpm´ 1, nq
we have

¨

˝

n
ÿ

k“jm´1

|cpj,kqpP q|
p1

˛

‚

1
p1

ď em
´

pm´ 1qm´1

αpjqαpjq

¯
1
p
}P }Ppm`np q. (2.8)

Theorem 2.1.7 will be a fundamental piece in the developments of Chapters 3, 5, 6
and 8. As it will be oftelny used, we will name the inequality in Theorem 2.1.7 Bayart-
Defant-Schlüters inequality or sometimes DBS inequality for short.

We will follow [BDS19] and give the proof of Theorem 2.1.7 for completeness.
For j P J pm ´ 1, nq and αpjq P Λpm ´ 1, nq its associated multi-exponent it holds

pm´1qm´1

αpjqαpjq
ď em´1 pm´1q!

αpjq! “ em´1|rjs|, then by Theorem 2.1.7 we have

¨

˝

n
ÿ

k“jm´1

|cpj,kqpP q|
p1

˛

‚

1
p1

ď me
1`m´1

p |rjs|
1
p }P }Ppm`np q, (2.9)

for every P P PpmCnq as it appears in [BDS19, Lemma 3.5 ].

Proposition 2.1.8. Let m,n P N, 1 ď p ď 8 and Q P Lp`np ,Ppm´1`np qq be the linear
operator given by

Qpwqpzq :“
ÿ

jPJ pm,nq

˜

n
ÿ

k“1

bpj,kqwk

¸

zj,

for z, w P Cn. Then for any j P J pm,nq and α “ αpjq P Λpm´ 1, nq it holds

˜

n
ÿ

k“1

|bpj,kq|
p1

¸1{p1

ď

ˆ

pm´ 1qm´1

αα

˙1{p

}Q}.

Proof. For every w P B`np we may consider Pw “ Qpwq P Ppm´1`np q. Notice that for
j P J pm´ 1, nq and α “ αpjq we have aαpPwq “

řn
k“1 bpj,kqwk. By Lemma 2.1.4 it holds

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

bpj,kqwk

ˇ

ˇ

ˇ

ˇ

ˇ

“ |aαpPwq| ď

ˆ

pm´ 1qm´1

αα

˙1{p

}Pw}Ppm`np q

“

ˆ

pm´ 1qm´1

αα

˙1{p

}Qpwq}Ppm`np q ď
pm´ 1qm´1

αα
}Q}.

Taking the supremum over w P B`np and using the duality p`pq
1 “ `p1 the result follows.
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Chapter 2. Coefficients summability

A last remark will be needed to prove Theorem 2.1.7. Notice that, fixed m,n P N, given
j P J pm ´ 1, nq and 1 ď k ď n the cardinal of the equivalence class of pj, kq compared to
|rjs| meets the inequality

|rpj, kqs| ď m|rjs|. (2.10)

This holds because the case in which |rpj, kqs| is the largest possible is achieved when k ‰ ji
for every 1 ď i ď m´1. Also, in that case the number of different vectors that are obtained
mixing pj, kq is mˆ |rjs|, as k generates a different vector for each position.

Proof of Theorem 2.1.7. Given P P PpmCnq take T P LpmCnq its associated symmetric
m-linear form. By Remark 1.2.5 for every zp1q, . . . , zpmqCn we can write

T pzp1q, . . . , zpmqq “
ÿ

iPMpm,nq

cipT qz
p1q
i1
¨ ¨ ¨ z

pmq
im

,

with cipT q “
cjpP q
|j| if i P rjs.

We may define Q P Lp`np ,Ppm´1`np qq for z, w P Cn by

Qpwqpzq :“ T pz, . . . , z
loomoon

m´1

, wq.

Let us compute Qpzqpwq based on the coefficients of T

Qpwqpzq “ T pz, . . . , z, wq “
ÿ

iPMpm,nq

cipT qzi1 ¨ ¨ ¨ zim´1wim

“
ÿ

iPMpm´1,nq

n
ÿ

k“1

cpi,kqpT qziwk

“
ÿ

jPJ pm´1,nq

ÿ

iPrjs

n
ÿ

k“1

cpi,kqpT qziwk

“
ÿ

jPJ pm´1,nq

|rjs|
n
ÿ

k“1

cpj,kqpT qzjwk

“
ÿ

jPJ pm´1,nq

˜

n
ÿ

k“1

|rjs|cpj,kqpT qwk

¸

zj,

as for every i P rjs it holds cpi,kqpT q “ cpj,kqpT q.

Using Proposition 2.1.8, the inequality in (2.10), and Harris inequality in Theorem 1.2.7
it follows
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2.1. Some summability results

¨

˝

n
ÿ

k“jm´1

pcpj,kqpP qq
p1

˛

‚

1{p1

“

˜

n
ÿ

k“1

p|rpj, kqs|cpj,kqpT qq
p1

¸1{p1

ďm

˜

n
ÿ

k“1

p|rjs|cpj,kqpT qq
p1

¸1{p1

ďm

ˆ

pm´ 1qm´1

αα

˙1{p

}Q} ď m

ˆ

pm´ 1qm´1

αα

˙1{p

e}P },

where α “ αpjq.

One last summability inequality that will be need in the following chapters is given by
the next theorem.

Theorem 2.1.9. Let m,n P N and P P PpmCnq it holds

n
ÿ

k“1

¨

˝

ÿ

jPJ pm´1,kq

|cpj,kqpP q|
2

˛

‚

1
2

ď em2
m´1

2 }P }Ppm`n8q.

Theorem 2.1.9 and its proof can be found in [BDF`17, Lemma 2.5] in a more general
version.

Notice that inequalities in Theorem 2.1.7 and Theorem 2.1.9 may be rewritten in terms
of comparing two norms in the space ofm-homogeneous polynomials in n complex variables.
If we consider the mixed norm of the coefficients on PpmCnq defined at some polynomial
P by

|P |p8,...,8,p1q :“ sup
jPJ pm´1,nq

¨

˝

n
ÿ

k“jm´1

pcpj,kqpP qq
p1

˛

‚

1{p1

,

we may write Theorem 2.1.7 in this terms as

|P |p8,...,8,p1q ď empm´ 1qm´1}P }`np , (2.11)

for every 1 ď p ď 8, m,n P N and P P PpmCnq.
On the other hand we may define for P pzq “

ř

jPJ pm,nq cjpP qzj P PpmCnq the norm

|P |p1,2,...,2q :“
n
ÿ

k“1

¨

˝

ÿ

jPJ pm´1,kq

|cpj,kqpP q|
2

˛

‚

1
2

,

now we can translate Theorem 2.1.9 in this terms as

|P |p1,2,...,2q ď em2
m´1

2 }P }`n8 , (2.12)
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Chapter 2. Coefficients summability

for every m,n P N and P P PpmCnq.
In both cases this gives a sort of Hardy-Littlelwood inequality, especially interesting for

1 ď p ď m where we have shown classical Hardy-Littlelwood inequalities doesn’t hold for
q ă 8. For 1 ď p ă m (2.11) gives a summability inequality that is better than (2.7). On
the other hand in comparing the classical Bonhenblust-Hille inequality in Theorem 2.1.2
with (2.12), this last result gives a bound for a mixed coefficient norm where the exponents
do not depend on m, this will be crucial on the study of holomorphic functions.

2.2 Beyond summability

If we change any of the parameters involved on either or both sides of the Hardy-Littlewood
inequalities in (2.4) beyond the limits described in Remark 2.1.5 and Theorem 2.1.6, it is
expected that the dependence on the number of variables becomes apparent. It is worth
asking how this reliance is in terms of the summability of the coefficients, the uniform norm
and the homogeneity degree considered.
Analogously, we can study a similar problem: the inequality that comes from exchanging
the roles (sides of the inequality) between the norm of the coefficients and the uniform
norm.

Problem 2.2.1. Let Amp,qpnq and Bm
q,ppnq be the smallest constants that fulfill the following

inequalities: for every m-homogeneous polynomial P in n complex variables,

|P |q ď Amp,qpnq }P }Ppm`np q,

}P }Ppm`np q ď Bm
q,ppnq |P |q.

How these constants behave in terms of the number of variables n? Which is their exact
asymptotic growth?

From the operator theoretic point of view these constants are exactly the norm of the
identity between the Banach spaces Ppm`np q and pPpmCnq, | ¨ |qq, i.e.,

Amp,qpnq “ }id : Ppm`np q Ñ pPpmCnq, | ¨ |qq },
Bm
q,ppnq “ }id : pPpmCnq, | ¨ |qq Ñ Ppm`np q}.

(2.13)

Observe that by (2.3), the dependence on n of the constant that appears when com-
paring the sup-norm with the Bombieri norm is exactly the same as the constants related
to Problem 2.2.1.

In the 80’s, Goldberg [Gol87] settled a similar problem in the context of matrix theory:
given an nˆn matrix A, he was interested in finding the best equivalence constant cpq, p, nq
(or its asymptotic behavior as n tends to infinity) which relates the `q-norm of the coeffi-
cients with the operator norm of A acting on `np . Partial and sharp results of this problem
(and also some variants of it) were given by Feng and Tonge in [Ton00, Fen03, FT07].
Observe that Problem 2.2.1 is essentially a polynomial version of Golberg’s problem.

To attack the main problem of this section it will be useful to compare, given a poly-
nomial P P PpmCnq and 1 ď r, s ď 8, the uniform norms }P }Ppm`nr q and }P }Ppm`ns q, and
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2.2. Beyond summability

the coefficient norms |P |r and |P |s. Recall that, for every 1 ď r ď s ď 8 and z P Cn, the
following relation between the norms in `nr and `ns hold

}z}s ď }z}r ď n
1
r
´ 1
s }z}s, (2.14)

which may be rephrased in terms of the balls of both spaces as

B`nr Ă B`ns Ă n
1
r
´ 1
sB`nr . (2.15)

We will need in many opportunities the Stirling formula or Stirling inequality, which
asserts that

?
2πk

ˆ

k

e

˙k

e
1

12k`1 ď k! ď
?

2πk

ˆ

k

e

˙k

e
1

12k , (2.16)

for every positive integer k. Using this formula we get

ˆ

m` n´ 1

m

˙

“
pm` n´ 1q!

pn´ 1q!m!
ď

d

m` n´ 1

pn´ 1qm

pm` n´ 1qm`n´1

mmpn´ 1qn´1
(2.17)

ď 2

ˆ

1`
n´ 1

m

˙mˆ

1`
m

n´ 1

˙n´1

ď 2emnm.

Remark 2.2.2. Given 1 ď r ď s ď 8 and m,n P N, for every P P PpmCnq it holds

|P |s ď |P |r ď

ˆ

m` n´ 1

n

˙
1
r
´ 1
s

|P |s ď p2e
mq

1
r
´ 1
snmp

1
r
´ 1
s
q|P |s, (2.18)

and

}P }Ppm`nr q ď }P }Ppm`ns q ď nmp
1
r
´ 1
s
q}P }Ppm`nr q. (2.19)

Proof. Fix P P PpmCnq. Let us begin with the coefficient norm comparison in (2.18).
Remember the dimension of PpmCnq as a C vector space is

`

m`n´1
m

˘

. Then by the definition

of the coefficient norm it is plain pPpmCnq, | ¨ |rq is isometric to `
pm`n´1

m q
r , so by (2.14) and

using the bound in (2.17) we have

|P |s ď |P |r ď

ˆ

m` n´ 1

n

˙
1
r
´ 1
s

|P |s ď p2e
mq

1
r
´ 1
snmp

1
r
´ 1
s
q|P |s.

For the comparison in (2.19) we use (2.15) and the homogeneity of P , then

}P }Ppm`nr q “ }P }B`nr ď }P }B`ns ď }P }n
1
r´

1
q B`ns

“ n
mp 1

r
´ 1
q
q
}P }B`nr .
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Chapter 2. Coefficients summability

2.2.1 Random polynomials

As usual, to understand the norm of bounded linear operators it is necessary to have a
global bound for every element on the domain and frequently some particular element to
show the sharpness of the bound. Now we present a family of polynomials that will show
the sharpness on the bounds in many different contexts through this thesis. The existence
of these polynomial is proved using probabilistic methods.

Bayart in [Bay12] (see also [Boa00, DGM03, DGM04]) exhibited polynomials with
unimodular coefficients and with small sup-norm on the unit ball of `np . Moreover, he
showed that for each 1 ă p ď 8 and every coefficient sequence paαqαPΛpm,nq there ex-
ists a sequence of signs pεαqαPΛpm,nq Ă T which defines an m-homogeneous polynomial
P pzq :“

ř

αPΛpm,nq εαaαz
α in n complex variables such that

}P }Ppm`np q ď Km,p ˆ

#

n
1´ 1

p if 1 ă p ď 2,

n
mp 1

2
´ 1
p
q` 1

2 if 2 ď p ď 8,
(2.20)

where Km,p ď C logpmq
1´ 1

p supαPΛpm,nq

!

|aα|
`

α!
m!

˘1{p
)

for some C ą 0 independent of n,m

and p.
We may choose aα “ 1 for every α P Λpm,nq. In this case we get an unimodular

polynomial and

Km,p ď C logpmq
1´ 1

p . (2.21)

Also, the number of non-zero coefficients is exactly the number of possible monomials,
`

n`m´1
m

˘

. These polynomials will be very useful: they will be extremal in a wide ranges of
values of p, r P r1,8s for the first inequality of Problem 2.2.1. Unfortunately, for a large
range of values of p and r these polynomials become useless and new extremal examples
are needed. Therefore, it is important to relax the number of terms appearing in the poly-
nomials, by allowing them to have some zero coefficients, in order to reduce quantitatively
the value of the sup-norm. Obviously if one gets rid of many coefficients/monomials this
helps considerably to lower the value of the norm but the important thing is to maintain
an appropriate balance (having a sufficient number of non-zero coefficients but keeping the
norm small).

We introduce the so-called Steiner polynomials, a special class of tetrahedral polynomi-
als defined by Dixon in [Dix76] and studied there with uniform norm in `n8. In [GMSP15]
the authors analyze the case of the tetrahedral polynomial with uniform norm in `np . These
polynomial turn out to give accurate enough lower bounds for the constant Amp,qpnq in many
cases.

We need some definitions to describe them. An Sppt,m, nq partial Steiner system
is a collection of subsets of size m of t1, . . . , nu such that every subset of t elements is
contained in at most one member of the collection of subsets of size m. Notice that we
may see every Sppt,m, nq partial Steiner system S as a subset of the index set J pm,nq.
An m-homogeneous polynomial P of n variables is a Steiner polynomial if there exists an
Sppt,m, nq partial Steiner system S such that P pz1, . . . , znq “

ř

jPS cjzj and cj “ ˘1. Note
that the monomials involved in this class have a particular combinatorial configuration.
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2.2. Beyond summability

The following result appears in [GMSP15, Theorem 2.5.].

Theorem 2.2.3. Let m ě 2 and S be an Sppm´1,m, nq partial Steiner system. Then there
exist signs pcjqjPS and a constant Dm,p ą 0 independent of n such that the m-homogeneous
polynomial P “

ř

jPS cjzj satisfies

}P }Ppm`np q ď Dm,p ˆ

#

log
3p´3
p pnq for 1 ď p ď 2,

log
3
p pnqn

mp 1
2
´ 1
p
q

for 2 ď p ă 8.

Moreover, the constant Dm,p may be taken independent of m for p ‰ 2.

The last ingredient we need for the applications is the existence of nearly optimal
partial Steiner systems, in the sense that they have many elements. This translates to
many unimodular coefficients of the Steiner polynomials. It is well known that any partial
Steiner system Sppm´ 1,m, nq has cardinality less than or equal to 1

m

`

n
m´1

˘

.
Rödl [Röd85] in the eighties proved that there exist partial Steiner systems Sppm ´

1,m, nq of cardinality at least p1 ´ op1qq 1
m

`

n
m´1

˘

, where op1q tends to zero as n goes to
infinity. Taking partial Steiner systems of this cardinality in Theorem 2.2.3 we have the
following.

Corollary 2.2.4. Let m ě 2. Then there exists a m-homogeneous Steiner unimodular
polynomial P of n complex variables with at least Cmn

m´1 unimodular coefficients satisfying
the estimates in Theorem 2.2.3, where Cm is a constant that depends only on m.

2.2.2 A partial solution to the problem.

If panqn and pbnqn are two sequences of real numbers we will write an ! bn if there exists a
constant C ą 0 (independent of n) such that an ď Cbn for every n. We will write an „ bn if
an ! bn and bn ! an. Recall that the number of m-homogeneous monomials in n variables
is |J pm,nq| “

`

n`m´1
m

˘

„ nm.
Given T P LpmCnq we will denote its r-th coefficients norm by |T |r, that is,

|T |r :“
´

ÿ

iPMpm,nq

|T pei1 , . . . , eimq|
r
¯

1
r
,

where Mpm,nq “ ti “ pi1, . . . , imq : 1 ď il ď n, 1 ď l ď mu. Using Remark 1.2.5 and
Harris formula on Theorem 1.2.7 it is no hard to see there exist constants Cl “ Clpmq ą 0,
l “ 1, 2, independent of n, such that for every P P PpmCnq and its associated symmetric
m-linear form qP we have

| qP |r ď |P |r ď C1| qP |r for 1 ď r ď 8, (2.22)

C2} qP }Lpm`np q ď }P }Ppm`np q ď }
qP }Lpm`np q for 1 ď p ď 8. (2.23)

It will be useful to notice that, as pPpmCnq, | ¨ |rq is an LppU, µq space where µ is the
counting measure and U “ Λpm,nq, then by equation (1.13) we have

rpPpmCnq, | ¨ |r0q, pPpmCnq, | ¨ |r1qsθ “ pPpmCnq, | ¨ |rq (2.24)
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Chapter 2. Coefficients summability

for every 0 ă θ ă 1 where 1
r “

1´θ
r0
` θ

r1
. We will need this in the proof of the following

theorem but it also will be needed all along the thesis.
We now state our main theorem of this chapter.

Theorem 2.2.5. Let Amp,qpnq be the smallest constant such that, for every m-homogeneous
polynomial P in n complex variables, |P |q ď Amp,qpnq }P }Ppm`np q. Then,
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Amp,qpnq „ 1 for pAq : r12 ď
1
q ď

m`1
2m ´ 1

p s or r1q ď
1
2 ^

m
p ď 1´ 1

q s,

Amp,qpnq „ n
m
p
` 1
q
´1

for pBq : r 1
2m ď

1
p ď

1
m ^ ´m

p ` 1 ď 1
q s,

Amp,qpnq „ n
mp 1

p
` 1
q
´ 1

2
q´ 1

2 for pCq : rm`1
2m ď 1

q ^
1
p ď

1
2 s or

r12 ď
1
q ď

m`1
2m ď 1

p `
1
q ^

1
p ď

1
2 s,

Amp,qpnq „ n
m
q
` 1
p
´1

for pDq : r12 ď
1
p ^ 1´ 1

p ď
1
q s,

Amp,qpnq ! n
m´1
q for pEq : r12 ď

1
p ď 1´ 1

q s,

Amp,qpnq „ n
1
q for pF q : rm´1

p ď 1´ 1
q ^

1
m ď

1
p ď

1
m´1 s,

Moreover, the power of n in pEq cannot be improved.

pAq

pCq

pDq

pEq

pBq

pF q

1
2

1
2

1
m´1

1
m

1
m

1
2m

m`1
2m

1
p

1
q

Figure 2.1: Graphical overview of the regions described in Theorem 2.2.5.

Figure 2.1 represents the regions described in Theorem 2.2.5. For the blank region we
do not know right order of Amp,qpnq (see the comments after Corollary 2.3.4 below). It is
noteworthy that much of the work is to determine which are the regions to consider.
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2.2. Beyond summability

Also note that for m “ 2 we have a complete description of the asymptotics of A2
p,qpnq.

For q ě 2 this can also be deduced as a consequence of [FT07, Theorems 1 and 2].

Proof. Let P be an m-homogeneous polynomial in n complex variables and T its associated
symmetric m-linear form.
‚pAq : Suppose first that 1

2 ď
1
q ď

m`1
2m ´ 1

p . If r :“ 2mq
pm`1qq´2m then 2m ď r ď p and by

the Hardy-Littlewood inequality, Theorem 2.1.6 piiq, we have

|P |q ! }P }Ppm`nr q ! }P }Ppm`np q.

Now suppose 1
q ď

1
2 and m

p ď 1 ´ 1
q . If we set r :“ mq

q´1 then m ď r ď mintp, 2mu; then
reasoning as before (but using part piq of Theorem 2.1.6) we can easily reach the same
conclusion.
‚pBq : Taking p ď r “ mq

q´1 , by the Hardy-Littlewood inequality, Theorem 2.1.6 piq, and
(2.19) it follows

|P |q ! }P }Ppm`nr q ! }P }Ppm`np qn
mp 1

p
´ 1
r
q
“ }P }Ppm`np qn

m
p
` 1
q
´1
.

For the optimality we can take the polynomial

P “
k´1
ÿ

j“0

zmj`1 ¨ ¨ ¨ zmj`m, with k “
” n

m

ı

,

it can be seen using Lagrange multipliers and the fact that p ě m, that

}P }Ppm`np q “ k
´ 1

mk

¯
m
p
„ n

1´m
p .

Then,

n
1
q „ k

1
q “ |P |q ď Amp,qpnq}P }Ppm`np q „ Amp,qpnqn

1´m
p ,

and therefore n
m
p
` 1
q
´1
! Amp,q.

‚pCq : Suppose m`1
2m ď 1

q and 1
p ď

1
2 . Using the Bohnenblust-Hille inequality Theo-

rem 2.1.6, inequalities (2.18) and (2.19) we have

|P |q ! n
mp 1

q
´m`1

2m
q
|P | 2m

m`1
! n

mp 1
q
´m`1

2m
q
}P }Ppm`n8q

! n
mp 1

q
´m`1

2m
q
n
m
p }P }Ppm`np q “ n

mp 1
p
` 1
q
´ 1

2
q´ 1

2 }P }Ppm`np q.

Suppose 1
2 ď

1
q ď

m`1
2m ď 1

p `
1
q and let r :“ 2mq

pm`1qq´2m . Note that maxt2m, pu ď r. By

the Hardy-Littlewood inequality, Theorem 2.1.6 piiq and (2.19) we get

|P |q ! }P }Ppm`nr q ! n
mp 1

p
´ 1
r
q
}P }Ppm`np q “ n

mp 1
p
` 1
q
´ 1

2
q´ 1

2 }P }Ppm`np q.

To show that this asymptotic growth is optimal, we consider P an m-homogeneous
unimodular polynomial as in (2.20). Then, as 1

p ď
1
2
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n
m
q ! |P |q ď Amp,qpnq}P }Ppm`np q ! Amp,qpnqn

mp 1
2
´ 1
p
q` 1

2 .

Therefore,

n
mp 1

p
` 1
q
´ 1

2
q´ 1

2 “ n
m
q
´rmp 1

2
´ 1
p
q` 1

2
s
! Amp,qpnq.

‚pDq : If T is the symmetric m-linear form associated to P , it induces a pm´ 1q-linear
mapping T̃ P Lpm´1lnp ; plnp q

˚q, defined by

T̃ px1, . . . , xm´1qp¨q “ T px1, . . . , xm´1, ¨q.

Then

|T |qq “
ÿ

iPMpm,nq

|T pei1 , . . . , eimq|
q

“
ÿ

iPMpm´1,nq

n
ÿ

l“1

|T pei1 , . . . , eim´1 , elq|
q

ď
ÿ

iPMpm´1,nq

p

n
ÿ

l“1

|T pei1 , . . . , eim´1 , elq|
p1q

q
p1 n

q
p
`1´q

ď n
m´1` r

p
`1´q

sup
}xi}pď1

}T̃ px1, . . . , xm´1q}
q
p1

“ n
m` q

p
´q
}T }qLpm`np q

,

where in the first inequality we used Hölder inequality in the case p1

q ě 1. Then by equations
(2.22) and (2.23) we have

|P |q ! n
m
q
` 1
p
´1
}P }`np .

For the optimality, we use (2.20) so, since 1 ď p ď 2 there exists a unimodular polyno-
mial P such that

n
m
r ! |P |r ď Amp,qpnq}P }Pp`np q ! Amp,qpnqn

1´ 1
p .

‚pEq : Observe that

Amp,qpnq “ }id : Ppm`np q Ñ pPpmCnq, | ¨ |qq}.

Thus, if 1
q “

θ
p1 , for 0 ă θ ă 1, using the multilinear interpolation Theorem 1.4.1 we

conclude that
Amp,qpnq ď pA

m
p,p1pnqq

θpAmp,8pnqq
1´θ.

Since 1 ď p ď 2, we have by part pDq that Amp,p1pnq „ n
m´1
p1 and also, applying the Cauchy

integral formula we deduce that Amp,8pnq „ 1. Therefore,

}id : Ppm`np q Ñ pPpmCnq, | ¨ |p1q} ! n
m´1
p1 ,

}id : Ppm`np q Ñ pPpmCnq, | ¨ |8q} ! 1
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2.2. Beyond summability

by Theorem 1.4.1 and (2.24) we obtain

}id : Ppm`np q Ñ pPpmCnq, | ¨ |qq} “ Amp,qpnq ď Amp,qpnq ď pA
m
p,p1pnqq

θpAmp,8pnqq
1´θ ! n

m´1
q .

For the lower bound, taking a Steiner polynomial P P PpmCnq as in Corollary 2.2.4
whose associated partial Steiner system has cardinality " nm´1 and 1 ď p ď 2, then

n
m´1
q ! |P |q ď Amp,qpnq}P }Ppm`np q ! Amp,qpnq log

3p´3
p pnq.

Hence, we have that for every ε ą 0,

n
m´1
q
´ε
! Amp,qpnq.

‚pF q : Let T be the symmetric m-linear form associated to P and, given 1 ď i ď n, let
us define Ti P Lpm´1Cnq as

Tipx2, . . . , xmq “ T pei, x2, . . . , xmq.

Then

|P |qq „ |T |
q
q “

ÿ

iPMpm,nq

|T pei1 , . . . , eimq|
q

“

n
ÿ

i“1

|Ti|
q
q

!

n
ÿ

i“1

}Ti}
q
Lpm´1`np q

(2.25)

ď n}T }qLpm`np q
„ n}P }qPpm`np q

,

where we have used in (2.25) the fact that Am´1
p,q pnq „ 1 for this range of p and q. Therefore

|P |q ! n
1
q }P }Ppm`np q.

For the lower bound, let P “
k
ÿ

j“1

zmj`1 ¨ ¨ ¨ zmj`m as in part pBq, then since p ě m (in

region pF q), we have that }P }Ppm`np q „ 1 and thus

n
1
q „ |P |q ! Amp,qpnq}P }Ppm`np q „ Amp,qpnq.

For 2 ď p ď m, 2 ď q ă 8 and p1
p ,

1
q q R pF q we could have used interpolation (in vertical

direction, as we did in the proof of part pEq of Theorem 2.2.5) to obtain effective upper
bounds for Amp,q. We choose not to state them explicitly since we believe these estimates
are suboptimal.
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Chapter 2. Coefficients summability

2.2.3 Asymptotic estimates for Bm
r,ppnq

We now present the correct asymptotic behavior for the constants Bm
r,ppnq defined in Prob-

lem 2.2.1. These estimates will be useful in the next section for the applications.

Proposition 2.2.6. Let Bm
r,ppnq be the smallest constant such that for every m-homogeneous

polynomial P in n complex variables, }P }Ppm`np q ď Bm
r,ppnq |P |r. We have

Bm
r,ppnq „

#

1 for r ď p1,

n
mp1´ 1

p
´ 1
r
q

for r ě p1.

Proof. Let n,m P N and 1 ď p, r ď 8. Let P “
ÿ

αPΛpm,nq

aαz
α be an m-homogeneous

polynomial in n variables. Suppose first that r ď p1. Then

}P }Ppm`np q “ sup
zPB`np

|
ÿ

αPΛpm,nq

aαz
α|

ď sup
zPB`np

p
ÿ

αPΛpm,nq

|aα|
p1q

1
p1 p

ÿ

αPΛpm,nq

|zα|pq
1
p

ď |P |p1 sup
zPB`np

p
ÿ

iPMpm,nq

|zi|
pq

1
p

“ |P |p1 sup
zPB`np

p

n
ÿ

k“1

|zk|
pq

m
p “ |P |p1 ď |P |r.

On the other hand, if r ě p1,

}P }Ppm`np q ď |P |p1 ď |P |rn
mp 1

p1
´ 1
r
q
“ |P |rn

mp1´ 1
p
´ 1
r
q
.

To study lower bounds, let us take the polynomial P pzq “
ř

jPJ pm,nq zj. Note that

|P |r „ n
m
r and

}P }Ppm`np q “ sup
zPB`np

|
ÿ

jPJ pm,nq
zj|

ě |
ÿ

jPJ pm,nq
n
´m
p | taking z “ p

m
hkkkkkkikkkkkkj

1

n
1
p

, . . . ,
1

n
1
p

q

„ n
mp1´ 1

p
q
.

Therefore Bm
r,ppnq " n

mp1´ 1
r
´ 1
p
q
.
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2.3. Some consequences of the results

2.3 Some consequences of the results

Now we present some applications of the previous results to two problems that, at a first
sight, seem to be disconnected from the previous development. The first outcome involves
a problem within the theory of complex interpolation of Banach spaces, the second is about
von Neumann’s inequality which belongs to the theory of bounded operators on Hilbert
spaces.

2.3.1 Complex interpolation on spaces of polynomials

The following is a problem within the theory of complex interpolation of spaces of homoge-
neous polynomials in Banach spaces. There is an extremely close relationship between the
tensor products of Banach spaces and the homogeneous polynomials in these spaces that
we choose not to develop in this thesis. The interested reader may translate the results in
this section to analogous results for the tensor product of Banach spaces endowed with the
injective norm. This can be also found in [GMMb].

Given a compatible couple of Banach spaces pX,Y q and 0 ă θ ă 1 we may consider
two new Banach spaces that may or may not be isomorphic

rPpmXq,PpmY qsθ and PpmrX,Y sθq.

Defant and Michels in [DM00] and also Kouba in [Kou91] proved remarkable results
on complex interpolation of injective tensor products of Banach spaces (see also [DM03]).
Those results are much more general but in particular they imply,

rPp2`p0q,Pp2`p1qsθ “ Pp2r`p0 , `p1sθq (2.26)

for 0 ă θ ă 1, 2 ď p0, p1 ď 8. Equation (2.26) must be interpreted as an equality
of Banach spaces, which means that there is a bounded and invertible operator between
those two spaces.

We will show that Theorem 2.2.5 implies that a similar statement does not hold for the
m-homogeneous case when m ą 2. Indeed, we will show that the following problem has a
negative answer.

Problem 2.3.1. Given m ą 2, 2 ď p0, p1 ď 8 and 0 ă θ ă 1, Is there an Banach spaces
isomorphism between Ppmr`p0 , `p1sθq and rPpm`p0q,Ppm`p1qsθ?

As we have already pointed out, for m “ 2 the answer to the question posed in Problem
2.3.1 is affirmative. It is natural to ask this question for all possible homogeneity degrees
m P N just for the sake of general understanding of the spaces of homogeneous polynomials,
but it is also interesting due to its possible applications. In general to understand the
interpolation spaces between Banach spaces plus Theorem 1.4.1 gives a very useful device
to attack several functional analysis problems.

Another variant of Problem2.3.1 is expressed in the following statement.
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Chapter 2. Coefficients summability

Problem 2.3.2. Given m ą 2, 2 ď p0, p1 ď 8 and 0 ă θ ă 1, Is there a Banach
space isomorphism T : Ppmr`p0 , `p1sθq Ñ rPpm`p0q,Ppm`p1qsθ, such that for every n P N it
induces linear isomorphism Tn : Ppmr`np0

, `np1
sθq Ñ rPpm`np0

q,Ppm`np1
qsθ?

Clearly a negative answer to Problem 2.3.1 gives a negative answer to Problem 2.3.2 as
there are more requirements to the isomorphism in the second problem. We will not give a
proper treatment here but the interested reader may look at the article [BM19] where the
authors prove that Problem 2.3.1 and Problem 2.3.2 are actually equivalent. There Bayart
and Mastylo investigate the interpolation between Banach spaces in a more general way
and give some applications to the polynomial problem.

A positive answer to the question posed in Problem 2.3.2 would give us a tool to solve
the missing cases in Theorem 2.2.5 and many of the results we show in this thesis could be
solved, in an easier way, if this were true.

Remark 2.3.3. Assuming a positive answer to Problem 2.3.1 it is not difficult to complete
all the remaining cases in Theorem 2.2.5 (i.e., for p P r2,ms and q P r2,8s). In that case
we have,

#

Amp,qpnq „ n
1
q for pF q : r 1

m ď
1
p ď

1
2 ^

1
q ď

m
2´m ¨

1
p `

m
2m´4 s,

Amp,qpnq ! n
mp 1

p
` 1
q
´ 1

2
q´ 1

q for pGq : r 1
m ď

1
p ď

1
2 ^

m
2´m ¨

1
p `

m
2m´4 ď

1
q ď

1
2 s,

Moreover, the power of n in pGq cannot be improved.

pF q

pGq

1
2

1
2

1
m

1
p

1
q

Figure 2.2: Graphical overview of the cases treated in Remark 2.3.3.

The previous remark is one very concrete motivation to investigate around the Problem
2.3.1. We don’t give a proof of Remark 2.3.3 because we know, as we will now show, this
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problem has a negative answer. Nevertheless we will show the lower bounds coincide with
Remark 2.3.3. For the region pGq this assertion can be proved using Steiner polynomials:
take a polynomial P as in Theorem 2.2.3, then

n
m´1
r „ |P |r ď Amp,rpnq}P }Ppm`np q ! Amp,rpnq logpnq

3
pn

mp 1
2
´ 1
p
q
! Amp,rpnqn

mp 1
2
´ 1
p
q`ε

,

for every ε ą 0, then we have

n
mp 1

r
` 1
p
´ 1

2
q´ 1

r
´ε
! Amp,rpnq.

For the region pF q the same argument with the same polynomial used in Theorem 2.2.5 in
region pF q work.

Corollary 2.3.4. The answer to the question in Problem 2.3.1 is negative in general.
In particular, for m ě 3, q ą m, pm ´ 1qq1 ď p1 ă m, mq1 ď p0 and θ such that
1
p “

1´θ
p0
` θ

p1
ď m, there is no bounded linear isomorphism

T : Ppmr`p0 , `p1sθq Ñ rPpm`p0q,Ppm`p1qsθ,

such that it induces linear isomorphism Tn : Ppmr`np0
, `np1

sθq Ñ rPpm`np0
q,Ppm`np1

qsθ.

Proof. Notice for the induced family of linear isomorphism we have }Tn} ď }T } and
}T´1
n } ď }T´1} for every n P N.

Observe in Theorem 2.2.5 that p 1
p0
, 1
q q P pAq and p 1

p1
, 1
q q P pF q with p1 ą m, then

}id : Ppm`np0
q Ñ pPpmCnq, | ¨ |qq} “ Amp0,qpnq ď Cm,p0,q,

}id : Ppm`np1
q Ñ pPpmCnq, | ¨ |qq} “ Amp1,qpnq ď Cm,p1,qn

1
q .

Using the multilinear interpolation Theorem 1.4.1 we have

}id : rPpm`np0
q,Ppm`np1

qsθ Ñ rpPpmCnq, | ¨ |qq, pPpmCnq, | ¨ |qqsθ} ď Cθm,p0,qC
1´θ
m,p1,qn

1´θ
q ,

for every 0 ă θ ă 1.

Assuming a positive answer to the question posed in Problem 2.3.1 and using Theorem
1.4.1 we would have that for, 1

p “
1´θ
p0
` θ

p1
, θ P p0, 1q and P P PpmCnq,

|P |q ! n
1´θ
q }P }rPpm`np0 q,Pp

m`np1 qsθ

ď n
1´θ
q }T }}P }Ppm`np q,

then

Amp,qpnq ! n
1´θ
q .

Choosing θ such that 1
p “

1´θ
p0
` θ

p1
ď m we have pp, qq P pF q, this contradicts the lower

bound from region pF q in Theorem 2.2.5 .
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Notice that Corollary 2.3.4 denies the existence of an isomorphism between the spaces
Ppmr`p0 , `p1sθq and rPpm`p0q,Ppm`p1qsθ with some conditions on p0 and p1. This does not
include the values of p0 and p1 that would disable the use of complex interpolation needed
to prove the result given in Remark 2.3.3. In [BM19, Theorem 3.10] the authors prove
that for those values there is no such isomorphism either. In particular they prove there
a theorem for a bigger family of interpolation methods, that for the complex methods can
be expressed in the following way.

Theorem 2.3.5. For m ě 2 and 2 ď h ď m given 1 ď p1 ă h ă p0 and 0 ă θ ă 1 there is
no Banach spaces isomorphism between Ppmr`np0

, `np1
sθq and rPpm`np0

q,Pp`np1
qsθq.

In [BPR18] the authors also gave some answers to similar questions concerning complex
interpolation between the tensor products of Banach spaces.

2.3.2 The multivariable von Neumann’s inequality

A classical inequality in operator theory, due to von Neumann [vN51], asserts that if T is
a linear contraction on a complex Hilbert space H (i.e., its operator norm is less than or
equal to one) then

}P pT q}LpHq ď supt|P pzq| : z P C, |z| ď 1u,

for every polynomial P in one (complex) variable.
Using dilation theory (see [SN74]), Ando [And63] exhibited an analogue inequality for

polynomials in two commuting contractions. However Varopoulos [Var74] showed that von
Neumann’s inequality cannot be extended for three or more commuting contractions.

It is an open problem of great interest in operator theory (see for example [Ble01, Pis01])
to determine whether there exists a constant Kpnq that adjusts von Neumann’s inequality.
More precisely, it is unknown whether or not there exists a constant Kpnq such that

}P pT1, . . . , Tnq}LpHq ď Kpnq supt|P pz1, . . . , znq| : |zi| ď 1u, (2.27)

for every polynomial P in n variables and every n-tuple pT1, . . . , Tnq of commuting con-
tractions in LpHq.

Dixon [Dix76] studied the multivariable von Neumann’s inequality restricted to homo-
geneous polynomials and, together with Mantero [MT79], studied some variations of this
problem. One of them is to determine the asymptotic behavior of the best possible constant
cpnq “ cm,p,qpnq such that

}P pT1, . . . , Tnq}LpHq ď cpnq}P }Ppm`nq q,

for every n-tuple T1, . . . , Tn of commuting operators on a Hilbert space satisfying

n
ÿ

i“1

}Ti}
p
LpHq ď 1, (2.28)

and any m-homogeneous polynomial on n variables, P . Some lower bounds were proven
there and also some upper bounds were given for the case p “ q. We will use Theorem
2.2.5 and Theorem 2.2.6 to show upper bounds for cpnq for any 1 ď p, q ď 8.
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2.3. Some consequences of the results

Recall that given a bilinear form a : X1 ˆX2 Ñ C its uniform norm is

}a}BilpX1ˆX2q :“ sup
px1,x2qPBX1

ˆBX2

|apx1, x2q|.

We need the following lemma from [MT79] which is an easy consequence of the Grothendieck
inequality. We prove it for the sake of completeness.

Lemma 2.3.6. For i “ 1, . . . , N , j “ 1, . . . ,M let xi, yj be vectors in some Hilbert space

H such the
řN
i“1 }xi}

p
H ď 1 and

řM
j“1 }yj}

p
H ď 1, and let pai,jqi,j P CNˆM . Then

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i,j

aijxxi, yjy

ˇ

ˇ

ˇ

ˇ

ˇ

ď KG}a}Bilp`Np ˆ`Mp q,

where KG denotes the Grothendieck constant and a is the bilinear form on CN ˆCM whose
coefficients are the aij’s.

Proof.

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i,j

ai,jxxi, yjy

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

i,j

ai,j}xi}H}yj}Hx
xi
}xi}H

,
yj
}yj}H

y

ˇ

ˇ

ˇ

ˇ

ˇ

ď KG supt
ÿ

i,j

ai,j}xi}H}yj}Hβiγj : β P B`N8 , γ P B`M8 u

ď KG}a}Bilp`Np ˆ`Mp q.

Proposition 2.3.7. Let T1, . . . , Tn be commuting operators on a Hilbert space H satisfying
(2.28) and P P PpmCnq. Then

}P pT1, . . . , Tnq}LpHq ď CAm´1
q,p1 pnq}P }Ppm`nq q,

where C ą 0 is constant independent of n.

Proof. Let ai, i PMpm,nq be the coefficients of the symmetric m-linear form a associated
to P , and let x, y be unit vectors in H. Note that we may also view a as a bilinear form
on Cnm´1

ˆ Cn, then by the previous lemma,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPMpm,nq

aixTi1 . . . Timx, yy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPMpm´1,nqˆt1,...,nu

api,jqxTi1 . . . Tim´1x, T
˚
j yy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď KG}a}Bilp`nm´1
p ˆ`np q

“ KG sup
βPB`np

¨

˝

ÿ

iPMpm´1,nq

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

api,jqβj

ˇ

ˇ

ˇ

ˇ

ˇ

p1
˛

‚

1{p1

.

Observe that
řn
j“1 api,jqβj are the coefficients of the pm´1q-linear form aβ which is obtained

by fixing one variable of a at β, that is, aβpv1, . . . , vm´1q “ apβ, v1, . . . , vm´1q. Also, the
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Chapter 2. Coefficients summability

p1-norm of the coefficients of aβ is less than or equal to the p1-norm of the coefficients of the
associated polynomial Pβ. Thanks to Theorem 1.2.7 it follows }Pβ}Ppm´1`nq q

ď e}P }Ppm`nq q,
then taking supremum over x, y P BH we have

}P pT1, . . . , Tnq}LpHq ď KG sup
βPB`np

Am´1
q,p1 pnq}Pβ}Ppm´1`nq q

ď KGeA
m´1
q,p1 pnq}P }Ppm`nq q.

Remark 2.3.8. Taking p “ q and using Theorem 2.2.5 we recover the inequality proved

in [MT79], that is, cpnq ! n
m´2
p1 if p ď 2 and cpnq ! n

m´2
2 if p ě 2.

We also have the following corollary.

Corollary 2.3.9. Let T1, . . . , Tn be commuting operators on a Hilbert space H satisfying
(2.28). If r12 ď

1
p1 ď

m
2pm´1q ´

1
q s or r 1

p1 ď
1
2 ^

m´1
q ď 1´ 1

p1 s, we have that

}P pT1, . . . , Tnq}LpHq ď D}P }Ppm`nq q,

for every m-homogeneous polynomial P , where D is constant independent of n.

Another variant studied in [MT79] is to determine the best possible constant dpnq “
dm,p,qpnq such that

}P pT1, . . . , Tnq}LpHq ď dpnq}P }Ppm`nq q,

for every m-homogeneous polynomial in n variables, P , and every n-tuple T1, . . . , Tn of
commuting operators on a Hilbert space H satisfying

˜

n
ÿ

i“1

|xTix, yy|
p

¸1{p

ď }x}H}y}H, (2.29)

for any vectors x, y P H. Note that (2.29) is equivalent to }
řn
i“1 Tiβi}LpHq ď }β}p1 , for

every β P Cn.

Lemma 2.3.10. Let T1, . . . , Tn P LpHq be operators satisfying (2.29), and let x, y P H.
Then if Q is the m-homogeneous polynomial in n variables defined by

Qpzq “
ÿ

iPMpm,nq

xTi1 . . . Timx, yyzi1 . . . zim ,

we have }Q}Ppm`n
p1
q ď }x}H}y}H.
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2.3. Some consequences of the results

Proof. By a simple calculation we have

}Q}Ppm`n
p1
q “ sup

zPB`n
p1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPMpm,nq

xTi1 . . . Timx, yyzi1 . . . zim

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
zPB`n

p1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ÿ

iPMpm,nq

Ti1 . . . Timzi1 . . . zimx, y

G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
zPB`n

p1

ˇ

ˇ

ˇ

ˇ

ˇ

C˜

n
ÿ

l“1

zlTl

¸m

x, y

Gˇ

ˇ

ˇ

ˇ

ˇ

ď sup
zPB`n

p1

›

›

›

›

›

n
ÿ

l“1

zlTl

›

›

›

›

›

m

}x}H}y}H ď }x}H}y}H.

Proposition 2.3.11. Let T1, . . . , Tn be commuting operators on a Hilbert space H satisfy-
ing (2.29) and P P PpmCnq. Then

}P pT1, . . . , Tnq}LpHq ď Amq,rpnqA
m
p1,r1pnq}P }Ppm`nq q.

Proof. Let ai be the coefficients of the symmetric m-linear form a associated to P and
x, y unit vectors in H. Then by the previous lemma and the fact that the r-norm of the
coefficients of a is less than or equal to the r-norm of the coefficients of the associated
polynomial P , we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPMpm,nq

aixTi1 . . . Timx, yy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝

ÿ

iPMpm,nq

|ai|
r

˛

‚

1{r¨

˝

ÿ

iPMpm,nq

|xTi1 . . . Timx, yy|
r1

˛

‚

1{r1

ď Amq,rpnq}P }Ppm`nq qA
m
p1,r1pnq.

Remark 2.3.12. Taking p “ q “ r1 and using Theorem 2.2.5 we recover the inequality

proved in [MT79, Proposition 20], that is dpnq ! n
pm´1qp 1

p1
` 1

2
q

if p ď 2 and

dpnq ! n
pm´1qp 1

p
` 1

2
q

if p ě 2. Note also that, in the last proposition, we have bounds that
do not depend on n for some combinations of p and q, e.g. for pp, qq “ p1,8q.
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Chapter 3

Monomial convergence

A classical result in complex analysis in one variable, and arguably the most important of
the theory, states that every holomorphic function can be represented locally as a power
series. More precisely, for f : U Ă CÑ C holomorphic on U a complex open set and z0 P U
there is r “ rpz0q ą 0 and a sequence pcmqmě1 Ă C such that

fpzq “
ÿ

mě1

cmpz ´ z0q
m ` fpz0q,

for every z P Brpz0q. This fact is also true for holomorphic functions on open sets on Cn
as it can be seen in Theorem 1.3.3.

There is a generalization of this fact to infinite dimentions. Given an open set U in a
Banach space X and a holomorphic function f : U Ă X Ñ C, for every z0 P U there are
m-homogeneous polynomials Pm “ Pmpf, z0q P PpmXq such that

fpzq “
ÿ

mě1

Pmpz ´ z0q ` fpz0q, (3.1)

for every z in a neighborhood of z0.

This is the only description we may expect in the Taylor series sense for a holomorphic
function on an open set in general Banach space, but some structure on the Banach space
might allow us to have another insight. The structure of Banach sequence spaces is exactly
what we need to define the monomials.

3.1 Definitions and first results

Given α P NpNq0 and a Banach sequence space X we may think of the monomial defined by
α as the mapping

p¨qα : X Ñ C
z ÞÑ zα.
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Chapter 3. Monomial convergence

This mapping is an m-homogeneous polynomial on X but not every m-homogeneous poly-
nomial is a monomial nor a finite linear combination of them. For example consider the
linear functional

`1 Ñ C

z Ñ
ÿ

kě1

zk,

which is clearly not a finite linear combination of monomials but, nevertheless, it is a limit
of linear combination of the them. It is natural to ask whether this is a general fact. We
will now give rigorous sense of this question and generalize it to holomorphic functions.

Let f be a holomorphic function on some Reinhardt domain R in a Banach sequence
space X. Fixed n P N, the restriction of f to Rn “ RXCn (which is a Reinhardt domain)
is holomorphic and, therefore by Theorem 1.3.3 has a monomial series expansion with

coefficients pa
pnq
α pfqqαPNn0 , i.e.,

fpzq “
ÿ

αPNn0

apnqα pfqzα,

for every z P Rn. Using that Rn Ă Rn`1 an the uniqueness of the power series coefficients

on finite many variables it is easy to see a
pnq
α pfq “ a

pn`1q
α pfq for α P Nn0 Ă Nn`1

0 . In other
words, we have a unique sequence paαpfqqαPNpNq0

, such that

fpzq “
ÿ

αPNpNq0

aαpfqz
α (3.2)

for all n P N and all z P Rn. This power series is called the monomial series expansion of
f . Sometimes it will be convenient to describe this monomial expansion in terms of the
alternative writing of the monomials tzj : j P J u where J “ YmPN0J pmq. In this cases we
will denote cjpfq “ aαpfq when j “ F pαq (see (1.6)).

Problem 3.1.1. Given an holomorphic function f in a Reinhardt domain R on a Banach
sequence space X, a number of questions arise.

(1) Is it true that fpzq “
ÿ

αPNpNq0

aαpfqz
α for every z P R?

(2) If not, given a family of holomorphic functions on R, can we describe the sets
$

’

&

’

%

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f in the family

,

/

.

/

-

?

First it is necessary to give a precise meaning to the expression fpzq “
ÿ

αPNpNq0

aαpfqz
α

whenever z has not finite support. There is no natural order in the set NpNq0 , also we would
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3.1. Definitions and first results

like the sum not to depend on some rather artificial order. We say that
ÿ

αPNpNq0

aαpfqz
α

converges to some element if the convergence is unconditional, or equivalently, if the con-
vergence is absolute.

One could expect that in the settings where the approaches given by equation (3.1)
and equation (3.2) coexist they are equivalent, just as in the finite dimensional setting.
But this is not the case. When dealing with a totally different problem, related to the
convergence of Dirichlet series, Toeplitz gave in [Toe13] an example that, to what we are
concerned here, provided a holomorphic function on c0 and a point in c0 for which the
monomial expansion does not converge absolutely. This shows that there are holomorphic
functions for which its monomial description is bad (the converse, however, holds true:
every function that may be described by its monomial series is holomorphic).

Within the theory of complex analysis in one variable the absolute convergence of
the power series plays an important role determining the radius of convergence, here
it will be crucial too. Also the unconditional nature of the convergence implies that
ř

αPNpNq0
aαpfqz

α P C is convergent if and only if it converges absolutely, as this two con-

cepts are equivalent in C. With this in mind the following question arises naturally: for
which z’s does the monomial expansion of every holomorphic function in a given family
converges absolutely? From equation (3.2) we know that this happens for every z P Rn
but, can we describe the maximal set for this to happen? Ryan showed in [Rya87] that the
monomial expansion of every holomorphic function on `1 converges at every z P `1. Later,
Lempert in [Lem99] proved that the monomial expansion of every holomorphic function on
ρB`1 (for ρ ą 0) converges at every z P ρB`1 . This is somehow an extreme case, where the
analytic and differential approaches coincide. What happens in other spaces or if we con-
sider smaller families of holomorphic functions? To deal with this questions it was defined
in [DMP09] the set of monomial convergence for a given holomorphic function. Let R be
a Reinhardt domain on some Banach sequence space X and f a holomorphic function on
R, the set of monomial convergence for f is

monf :“
!

z P CN :
ÿ

αPNpNq0

|aαpfqz
α| ă 8

)

,

i.e., those elements of R for which the power series of f converge absolutely. For a family
of holomorphic functions on R named FpRq its set of monomial convergence is

monFpRq :“
!

z P CN :
ÿ

αPNpNq0

ˇ

ˇaαpfqz
α
ˇ

ˇ ă 8 for every f P FpRq
)

.
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Chapter 3. Monomial convergence

There are many families of holomorphic functions for which is interesting to find its set
of monomial convergence. Given a sequence Banach space X the following families are the
most natural to study in this sense:

• PpmXq, m-homogeneous polynomials on X.

• AupBXq, the Banach algebra of all uniformly continuous holomorphic functions on
the unit ball of X.

• H8pBXq, the Banach space of holomorphic functions on the ball of X which are also
bounded.

• HbpXq, the Fréchet space of the entire functions on X which are also bounded on the
bounded set of X.

Let f : R Ă X Ñ C be a holomorphic function on a Reinhardt domain R of a Banach
sequence spaceX. It makes sense to compute

ř

αPNpNq0

ˇ

ˇaαpfqz
α
ˇ

ˇ for every z P CN, even if f is

not defined outside R and z R R. On the other hand the condition fpzq “
ř

αPNpNq0
aαpfqz

α

have meaning only for z P R. Then in general, given FpRq a family of holomorphic
functions, monFpRq is not exactly the set

!

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P FpRq

)

.

Anyway for many natural Banach sequence spaces and families of holomorphic functions
on Reinhardt domains in those spaces these two sets coincide. In particular this is true for
those families in which we focus on this thesis.

Proposition 3.1.2. Given 1 ă p, q ď 8 for X “ `p,q we have

monFpRq “
!

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P FpRq

)

,

for FpRq being HbpXq, H8pBXq or PpmXq for any m P N.

We give a proof of Proposition 3.1.2 on Appendix A.
We will now give a series of basic results for the set of monomial convergence. A very

useful but simple fact is that given two families of holomorphic functions F1pRq Ă F2pRq
on certain Reinhardt domain R we have

monF2pRq Ă monF1pRq. (3.3)

For a bounded Reinhardt domain R in a Banach sequence space X, H8pRq is the
family of the holomorphic functions on R which are bounded on R. Recall that H8pRq is
a Banach space with the norm given by }f}R “ supzPR |fpzq| for every f P H8pRq. Given
a subfamily FpRq Ă H8pRq we say FpRq is closed in H8pRq when it is a closed subspace
with that norm.
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3.1. Definitions and first results

Remark 3.1.3. Given a bounded Reinhardt domain R, a closed family FpRq in H8pRq
and α P NpNq0 , the linear mapping

FpRq Ñ C (3.4)

f ÞÑ aαpfq, (3.5)

is bounded.

Proof. Observe that for f P H8pRq and fixed α “ pα1, . . . , αn, 0, . . .q P NpNq0 , thanks to
Theorem 1.3.3, we have

aαpfq “
1

p2πiqn

ż

|ξ1|“ρ1

¨ ¨ ¨

ż

|ξn|“ρn

fpξ1, . . . , ξnq

pξ1 ´ z1q
α1`1 ¨ ¨ ¨ pξn ´ znqαn`1

dξ,

with ρ1Dˆ ¨ ¨ ¨ ˆ ρnD Ă R. We have then

|aαpfq| ď
1

p2πqn
śn
k“1 ρ

αk
k

}f}ρ1Dˆ¨¨¨ˆρnD ď Cpαq}f}R.

For a closed subfamily FpRq in H8pRq the following equivalence is a powerful tool
that translates the fact of an element being on monFpRq to an inequality over the whole
family.

Proposition 3.1.4. Given a bounded Reinhardt domain R in a Banach sequence space X
and FpRq a closed subfamily of H8pRq the following are equivalent:

• z P monFpRq.

• There is some constant Cz ą 0 such that
ÿ

αPNpNq0

|aαpfqz
α| ď Cz}f}R, (3.6)

for every f P FpRq.

Proof. Given z P Rmeeting (3.6) it clearly holds
ř

αPNpNq0
|aαpfqz

α| ă 8 for every f P FpRq.
For the other implication consider the linear mapping

Φz : FpRq Ñ `1

´

NpNq0

¯

f ÞÑ paαpfqz
αq
αPNpNq0

,

that is well defined as z P monFpRq. For fn P FpRq such that fn Ñ f P FpRq and

Φzpfnq Ñ b “ pbαqαPNpNq0
we have, for any α P NpNq0 , that aαpfnq Ñ bα. By Remark 3.1.3 it

holds aαpfnq Ñ aαpfq, and due to the uniqueness of the limit b “ Φzpfq the graph of Φz

is closed. As FpRq is a closed subfamily of H8pRq and H8pRq is a Banach space, then
FpRq is also Banach. Using the closed graph theorem for Banach spaces it follows Φz is
bounded, which is exactly what we wanted.
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Chapter 3. Monomial convergence

For every m P N the space PpmXq is a closed subfamily of H8pBXq for every Banach
sequence space X. This is also the case for AupBXq. On the other hand, although as sets
we have HbpXq Ă H8pBXq, HbpXq is not a closed subspace of H8pBXq. In Chapter 6 we
will need and provide a new version of Proposition 3.1.4 for the case of HbpXq.

Now we present a point of view that will play an important role describing sets of
monomial convergence of certain families of holomorphic functions in terms of subfamilies
of H8pB`8q. Let R be a bounded Reinhardt domain and FpRq a closed subfamily of
H8pRq. Given f P FpRq and w P R we define fw P H8pB`8q as fwpzq “ fpw ¨ zq.

Remark 3.1.5. For every Reinhardt domain R and every w P R it holds

}fw}B`8 ď }f}R,

and aαpfwq “ aαpfqw
α.

Proof. Notice that given w P R and z P B`8 it holds w ¨z P R as |pw ¨zqk| “ |wk||zk| ď |wk|
for every k P N. Then by definition it follows

}fw}B`8 “ sup
zPB`8

|fwpzq| “ sup
zPB`8

|fpw ¨ zq| ď sup
uPR

|fpuq| “ }f}R.

Fix n P N, for z P Rn we have w ¨ z P Rn and then

fwpzq “ fpw ¨ zq “
ÿ

αPNn0

aαpfqpw ¨ zq
α “

ÿ

αPNn0

aαpfqw
αzα.

By the uniqueness of the monomial expansion in finite complex variables we have

aαpfwq “ aαpfqw
α,

for every α P Nn0 for every n P N, then it holds for every α P NpNq0 .

Given a Reinhardt domain R on a Banach sequence space X and fixed an element
w P R we have

• For R “ X and f P HbpXq then fw P Hbp`8q.

• For R bounded and f P H8pRq then fw P H8pB`8q.

• For R “ X and P P PpmXq then Pw P Ppm`8q.

Given a family of holomorphic functions FpRq on a Reinhardt domain R we define

rFpRqs8 :“ tfw : for every w P R and every f P FpRqu .

Notice then that it holds the set inclusions rHbpXqs8 Ă Hbp`8q, rH8pRqs8 Ă H8pB`8q
and rPpmXqs8 Ă Ppm`8q.
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3.2. Some characterizations

Lemma 3.1.6. For every Reinhardt domain R and every family of holomorphic functions
FpRq it holds

R ¨monrFpRqs8 Ă monFpRq.

Proof. Given w P R and f P FpRq it holds fw P rFpRqs8. Then for z P monrFpRqs8, as
aαpfwq “ aαpfqw

α we have
ÿ

αPNpNq0

|aαpfqpwzq
α| “

ÿ

αPNpNq0

|aαpfqw
αzα| “

ÿ

αPNpNq0

|aαpfwqz
α| ă 8.

3.2 Some characterizations

The only natural family of holomorphic functions for which the set of monomial convergence
is known for every Banach sequence space is the one given by its dual space, as presented
in equation (A.0.3). In general it is difficult to have a finished description of these sets in
terms of some known space or set. As we highlighted before the efforts of Ryan [Rya87] and
Lempert [Lem99] toghether made the first result which characterized the set of monomial
convergence of a family of holomorphic function on an infinite dimensional Banach sequence
space (other than the dual space of any Banach sequence space). The following theorem
is a corollary of those investigations.

Theorem 3.2.1. For every ρ ą 0 it holds monH8pρB`1q “ ρ ¨B`1. Also for every m P N
Ppm`1q “ `1.

For the other end of the range for Lorentz sequence spaces in [BDF`17] the authors
proved the following two theorems. The first result describes exactly the set of monomial
convergence for the homogeneous polynomials on `8.

Theorem 3.2.2. Given m P N it holds

monPpm`8q “ ` 2m
m´1

,8.

Moreover, there exist an universal constant C ą 0 such that for every z P ` 2m
m´1

,8 and every

P P Ppm`8q it holds
ÿ

αPΛpmq

|aαpP qz
α| ď Cm}z}m` 2m

m´1 ,8
}P }Ppm`8q.

For the following result we will consider the set

B :“

$

&

%

z P B`8 : lim sup
nÑ8

1
a

logpnq

˜

n
ÿ

k“1

pz˚k q
2

¸1{2

ă 1

,

.

-

,

and its closure

B “

$

&

%

z P B`8 : lim sup
nÑ8

1
a

logpnq

˜

n
ÿ

k“1

pz˚k q
2

¸1{2

ď 1

,

.

-

.
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Chapter 3. Monomial convergence

In the case of H8pB`8q the following theorem is a very tight characterization of its set of
monomial convergence.

Theorem 3.2.3. B Ă monH8pB`8q Ă B.

The last description known for these sets, in terms of classic spaces, is the set of
monomial convergence for the family of homogeneous polynomials on `r,8. In [BDS19] the
authors prove that, for r ď 2 ď 8, it holds

monPpm`r,8q “ `
pm´1

2m
` 1
r q
´1
,8
, (3.7)

this fact was already mentioned in [DMP09] without an explicit proof and a more detailed
proof may be found in Schlüters doctoral thesis [Sch15] .

For H8pB`rq with 1 ă r ă 8 the lower and upper bounds for its set of monomial
convergence have a “wider distance”. In [DMP09, Example 4.9 (a)] the authors gave the
first result looking forward a characterization the set of monomial convergence for these
families, given ε ą 0 it holds

• For 1 ď r ă 2

`1 XB`r Ă monH8pB`rq Ă `1`ε XB`r . (3.8)

• For 2 ď r and 1
q “

1
2 `

1
r

`q XB`r Ă monH8pB`rq Ă `q`ε XB`r . (3.9)

Then in [BDS19, Theorem 5.5] it appears the following refinement of the lower bounds

• For 1 ă r ď 2 and θ ą 1
2

˜

1

n
1
r1 logpn` 2q

θ
r1

¸

¨B`r Ă monH8pB`rq. (3.10)

• For 2 ď r ă 8 and θ ą 0

˜

1

n
1
r1 logpn` 2q

θ
r1

¸

¨B`r Ă monH8pB`rq. (3.11)

In the following section we present a general description of a very important and nice
property that some families of holomorphic function have: the rearrangement property.
We also prove that the most natural families of holomorphic functions have it.
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3.3. Rearrangement families of holomorphic functions.

3.3 Rearrangement families of holomorphic functions.

A very useful tool in the study of sets monomial convergence (see [BDF`17]) is that usually,
a sequence belongs to the set of monomial convergence if and only if its decreasing rear-
rangement does (see also [DGMPG08]). We isolate this property, and say in this case that
FpRq is a rearrangement family. In [BDF`17] it was proved that H8pBc0q and Ppmc0q are
rearrangement families. The fact that this is also the case for `r for 1 ď r ă 8 is implicitly
used in [BDS19]. Our aim now is to find other rearrangement families of holomorphic
functions (compare this with [Sch15, Chapter 7] where similar results appear).

To this purpose we introduce another concept. We say a family F Ă HpRq is linearly
balanced if f ˝T |R

P F for every f P F and T : X Ñ X linear with }T } “ 1 and T pRq Ă R.

Remark 3.3.1. Rather straightforward arguments show that HbpXq, AupBXq, H8pBXq
and PpmXq for every m ě 2 are linearly balanced families.

Theorem 3.3.2. Let R be a symmetric Reinhardt domain of a symmetric Banach sequence
space X and F Ă HpRq a linearly balanced family such that monF Ă c0, then F is a
rearrangement family.

We give a series of preliminary results needed for the proof of Theorem 3.3.2. Given
an injective mapping σ : NÑ N we define two mappings in the following way. First

Tσ : CN Ñ CN

x ÞÑ pxσpkqqkPN .
(3.12)

Second, Sσ : CN Ñ CN is defined for x P CN by

pSσxqk “

#

0 if k R σpNq
xσ´1pkq if k P σpNq.

(3.13)

Both are clearly linear and TσpSσxq “ x for every x.

Remark 3.3.3. Let us see now how these two mappings behave with the decreasing
rearrangement of a bounded sequence x. Fixed n P N and J Ă N such that cardpJq ă n
we have

sup
σpjqPNzJ

|xσpjq| “ sup
jPpNzJqXσpNq

|xj | ď sup
jPNzJ

|xj | .

Thus

`

Tσpxq
˘˚

n
“ inft sup

σpjqPNzJ
|xσpjq| : J Ă N, cardpJq ă nu

ď inft sup
jPNzJ

|xj | : J Ă N, cardpJq ă nu “ x˚n.

That is, Tσpxq
˚ ď x˚. A similar argument shows that pSσxq

˚ “ x˚.
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Chapter 3. Monomial convergence

The following lemma shows that the restrictions of Sσ and Tσ to symmetric Banach
sequence spaces are endomorphisms of norm 1.

Lemma 3.3.4. Let X be a symmetric Banach sequence space and σ : NÑ N an injective
mapping. Then Tσ, Sσ : X Ñ X defined by (3.12) and (3.13) respectively are well defined,
}Tσ} “ 1 and Sσ is an isometry.

Proof. Remark 3.3.3 together with the symmetry of the space imply that both operators
are well defined, that Sσ is an isometry and }Tσ} ď 1. The fact that }Tσ} “ 1 follows from
the equality TσpSσx0q “ x0.

Now we are able to give the proof of Theorem 3.3.2.

Proof of Theorem 3.3.2. To begin with we take z P monF and see that z˚ P monF . As
monF Ă c0 there is some injective mapping σ : N Ñ N such that z˚k “ |zσpkq| for every
k P N. Observe that |Tσpzq| “ z˚. We take f P F , then f˝Tσ also belongs to F and what we

want to see first is that, if αpσq P NpNq0 denotes the multi-index that fulfils Tσpzq
α “ zαpσq,

then
cαpfq “ cαpσqpf ˝ Tσq (3.14)

for every α. Take, then, some α P NpNq0 and set N “ maxtk : αk ‰ 0u. On one hand we
have

pf ˝ Tσqpwq “
ÿ

βPNN0

cβpf ˝ Tσqw
β ,

for all w P CN XR. Define M “ maxtσpkq : k “ 1, . . . , Nu and note that Tσpwq P CM XR.
Thus

pf ˝ Tσqpwq “ fpTσpwqq “
ÿ

γPNN0

cγpfqTσpwq
γ “

ÿ

γPNN0

cγpfqw
γpσq.

The uniqueness of the Taylor coefficients gives (3.14). Once we have this we obtain (recall
that f ˝ Tσ P F and z P monF)

ÿ

αPNpNq0

|cαpfqpz
˚qα| “

ÿ

αPNpNq0

|cαpfq||pTσpzqq
α|

“
ÿ

αPNpNq0

|cαpσqpf ˝ Tσq||z
αpσq| ď

ÿ

αPNpNq0

|cαpf ˝ Tσqz
α| ă 8,

which proves our claim.

For the converse, suppose z˚ P monF . Again, as monF Ă c0, there is some injective
mapping σ : NÑ N such that z˚k “ |zσpkq| for every k P N. Now it will be useful to notice
|z| “ Sσpz

˚q. Given f P F we have

ÿ

αPNpNq0

|cαpfqz
α| “

ÿ

αPNpNq0

|cαpfq||pSσpz
˚qqα|. (3.15)

56



3.4. The set of monomial convergence of Ppm`rq

Besides,

ÿ

αPNN0

cαpf ˝ Sσqw
α “ fpSσpwqq “

ÿ

αPNN0

cαpfqSσpwq
α “

ÿ

αPNN0

cαpfqSσpwq
α.

Observe that for α P NpNq, if there is k P NzσpNq such that αk ‰ 0 then Sσpwq
α “ 0,

otherwise we define αpσ´1q P NpNq as the only multi-index which fulfils Sσpwq
α “ wαpσ

´1q.
By the uniqueness of the coefficients of the Taylor expansion for f ˝Sσ : CN Ñ C it follows

cαpfqSσpz
˚qα “

#

0 if there is k R σpNq such that αk ‰ 0

cαpσ´1qpf ˝ Sσqpz
˚qαpσ

´1q otherwise,

then

ÿ

αPNpNq0

|cαpfqz
α| “

ÿ

αPNpNq0

|cαpfq||pSσpz
˚qqα|

“
ÿ

αPpσpNqYt0uqpNq

ˇ

ˇcαpσ´1qpf ˝ Sσqpz
˚qαpσ

´1q
ˇ

ˇ

ď
ÿ

αPNpNq0

|cαpf ˝ Sσq||pz
˚qα| ă 8,

as we wanted.

Remark 3.3.5. Let R be a symmetric Reinhardt domain in a Banach sequence space X
and consider a family of homolorphic functions F Ă HpRq such that for some m ě 2 the
space PpmXq lies inside F . Then, as X Ă `8 continuously we have Ppm`8q Ă PpmXq Ă F .
With this, Theorem 3.2.2 yields

monF Ă monPpm`8q “ ` 2m
m´1

,8 Ă c0.

Corollary 3.3.6. For every symmetric Banach sequence space X the families of holo-
morphic functions HbpXq,AupBXq, H8pBXq and PpmXq with m ě 2 are rearrangement
families.

Proof. Each of these families satisfies the condition in Remark 3.3.5. Then Remark 3.3.1
and Theorem 3.3.2 give the conclusion.

3.4 The set of monomial convergence of Ppm`rq

We now turn our attention to the set of monomial convergence of the homogeneous poly-
nomials. As we have already mentioned for 2 ď r ď 8 and m ě 2 it holds

monPpm`r,8q “ `q,8,
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Chapter 3. Monomial convergence

with q “ qprq “
`

m´1
2m ` 1

r

˘´1
. As the natural inclusion `r ãÑ `r,8 is continuous it holds

Ppm`r,8q Ă Ppm`rq and then

monPpm`rq Ă monPpm`r,8q “ `q,8.

Also using Theorem 3.2.2 and Lemma 3.1.6 with R “ `r and FpRq “ Ppm`rq we have

`r ¨ ` 2m
m´1

,8 “ `r ¨monPpm`8q Ă `r ¨ rPpm`rqs8 Ă monPpm`rq. (3.16)

For 1 ă r ď 2 and m ě 2, define q “ pmr1q1 “ mr
rpm´1q`1 . In [DMP09, Example 4.6] the

authors prove that
`q´ε Ă monPpm`rq Ă `q,8, (3.17)

for every ε ą 0. Our aim now is to tighten this lower bound. In [DMP09] the authors
conjecture that

`q Ă monPpm`rq, (3.18)

where q “ pmr1q1 as before. In the following theorem we present the first result improving
the lower bound in (3.17) and proving that conjecture. Later in Chapter 8 we give a better
result for the lower bound with spaces that get closer to `q,8 as the homogeneity degree
goes to infinity.

Theorem 3.4.1. For each 1 ă r ď 2, there exists dr ą 1 such that for each m and n,
every P P PpmCnq and all z P Cn

ÿ

jPJ pm,nq
|cjpP qzj| ď mdr}P }Ppm`nr q}z}

m
`nq
, (3.19)

where q :“ pmr1q1.

We will first use Theorem 3.4.1 to show the conjecture previously mentioned is true
and then using a technical lemma we will be able to prove it.

Corollary 3.4.2. Given 1 ă r ď 2, m ě 2 and q “ pmr1q1 it holds

`q Ă monPpm`rq.

Proof. Fix z P `q and take P P Ppm`rq. Given n P N consider Pn “ P ˝ ιn P PpmCnq and
πnz P Cn where πn and ιn are the natural projection and inclusion defined in (1.3) and
(1.4) respectively. Notice that }Pn}Ppm`nr q ď }P }Ppm`rq and }πnpzq}`nq ď }z}`q . Also by the
construction we did of the monomial expansion of an holomorphic function we have, for
every j P J pm,nq that cjpPnq “ cjpP q.

Thanks to Theorem 3.4.1 we have
ÿ

jPJ pm,nq
|cjpP qpπnzqj| ď mdr}Pn}Ppm`nr q}πnz}

m
`nq
ď mdr}P }Ppm`rq}z}

m
`q ă 8

taking the limit nÑ8 it follows
ÿ

jPJ pmq
|cjpP qzj| ď mdr}P }Ppm`rq}z}

m
`q ă 8.

As this holds for every P P Ppm`rq then z P monPpm`rq.
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3.4. The set of monomial convergence of Ppm`rq

To prove Theorem 3.4.1 we need the following technical lemma.

Lemma 3.4.3. Let r ą 1. There exists Cr ą 0 such that, for every m,

sup
!mm{r

m!

n1!

n
n1{r
1

¨ ¨ ¨
nk!

n
nk{r
k

: k P N, n1, . . . , nk P Nzt0u, n1 ` ¨ ¨ ¨ ` nk “ m
)

ď Crm
e

1
r´1 ´1

2 .

Proof. We proceed by induction on m. The statement is trivially satisfied for m “ 2 and
we assume it holds for m´1. Fix then k and choose n1, . . . , nk P N, all non-zero, such that
n1 ` ¨ ¨ ¨ ` nk “ m. We may assume n1 ě ¨ ¨ ¨ ě nk ě 1. We consider two possible cases.

First, if k ă e
1
r´1 Stirling inequality in (2.16) and the fact that nj ď m for every j yield

mm{r

m!

n1!

n
n1{r
1

¨ ¨ ¨
nk!

n
nk{r
k

ď
1

?
2πm

em

mm{r1

k
ź

j“1

a

2πnjn
nj{r

1

j e1{p12njq

enj

ď
`

2π
˘
k´1

2 e
řk
j“1

1
12nj

ˆ

nn1
1 ¨ ¨ ¨nnkk
mm

˙
1
r1
ˆ

n1 ¨ ¨ ¨nk
m

˙
1
2

ď
`

2π
˘
k´1

2 e
řk
j“1

1
12jm

k´1
2

ď
`

2π
˘
e

1
r´1 ´1

2 e
r

12pr´1qm
e

1
r´1 ´1

2 .

On the other hand, if k ě e
1
r´1 we have

mm{r

m!

n1!

n
n1{r
1

¨ ¨ ¨
nk!

n
nk{r
k

“

´ m

m´ 1

¯
m´1
r 1

m1{r1
pm´ 1qpm´1q{r

pm´ 1q!

n1!

n
n1{r
1

¨ ¨ ¨
nk´1!

n
nk´1{r
k´1

nk!

n
nk{r
k

. (3.20)

If nk “ 1 then n1 ` ¨ ¨ ¨ ` nk´1 “ m´ 1 and we may use the induction hypothesis and the
fact that k ď m to have

mm{r

m!

n1!

n
n1{r
1

¨ ¨ ¨
nk!

n
nk{r
k

ď

´ m

m´ 1

¯
m´1
r 1

k1{r1
Crpm´ 1q

e
1
r´1 ´1

2

ď Cre
1{r 1

e
1

pr´1qr1

pm´ 1q
e

1
r´1 ´1

2 ď Crm
e

1
r´1 ´1

2 .

Finally, if nk ą 1 then

pnk ´ 1q
nk´1

r1 nk

n
nk{r
k

“

´nk ´ 1

nk

¯

nk´1

r1

n
1
r1

k ď n
1
r1

k .

We may use again the induction hypothesis and the fact that nk ď m{k to obtain from
(3.20)

mm{r

m!

n1!

n
n1{r
1

¨ ¨ ¨
nk!

n
nk{r
k

ď

´ m

m´ 1

¯
m´1
r
´nk
m

¯1{r1

Crpm´ 1q
e

1
r´1 ´1

2

ď

´ m

m´ 1

¯
m´1
r 1

k1{r1
Crpm´ 1q

e
1
r´1 ´1

2 .

From here we conclude as in the previous case.
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Chapter 3. Monomial convergence

Proof of Theorem 3.4.1. Clearly it is enough to show (3.19) and, by the Corollary 3.3.6 we
may assume without loss of generality z “ z˚. First of all, by Hölder inequality we have

ÿ

1ďj1ď¨¨¨ďjmďn

|cjpP qzj1 . . . zjm´1zjm | “
ÿ

1ďj1ď¨¨¨ďjm´1ďn

|zj1 . . . zjm´1 |

n
ÿ

jm“jm´1

|cjpP qzjm |

ď
ÿ

1ďj1ď¨¨¨ďjm´1ďn

|zj1 . . . zjm´1 |

ˆ n
ÿ

jm“jm´1

|cjpP q|
r1
˙

1
r1
ˆ n

ÿ

jm“jm´1

|zrjm |

˙
1
r

Using BDS inequality in Theorem 2.1.7 together with the fact that for every pi, kq P

J pm´ 1, nq we have
`

pm´1qm´1

αpi,kqαpi,kq

˘

ď epm´ 1q
`

pm´2qm´2

αpiqαpiq

˘

we obtain

ÿ

jPJ pm,nq
|cjpP qzj|

ď e1` 1
r pm´1q

1
rm}P }Ppm`nr q

n
ÿ

jm´1“1

|zjm´1 |
ÿ

iPJ pm´2,jm´1q

|zi|

ˆ

pm´ 2qm´2

αpiqαpiq

˙
1
r
ˆ n

ÿ

jm“jm´1

|zjm |
r

˙
1
r

For each fixed 1 ď k ď n, using |rjs| and Lemma 3.4.3 (we write ar “
e

1
r´1´1

2 ) and the fact
that q ď r, we have

|zk|
ÿ

iPJ pm´2,kq

|zi|

ˆ

pm´ 2qm´2

αpiqαpiq

˙
1
r
ˆ n
ÿ

j“k

|zj |
r

˙
1
r

ď |zk|
ÿ

iPJ pm´2,kq

|zi||i|
pm´ 2qpm´2q{r

αpiqαpiq{r|i|

´

|zk|
r´q

n
ÿ

j“k

|zj |
q
¯

1
r

“ Crpm´ 2qar |zk|
2´ q

r

k
ÿ

i1,...,im´2“1

|zi1 ¨ ¨ ¨ zim´2 |

´

n
ÿ

j“k

|zj |
q
¯

1
r

“ Crpm´ 2qar}z}
q
r
`q
|zk|

2´ q
r

´

k
ÿ

i“1

|zi|
¯m´2

ď Crpm´ 2qar}z}
q
r
`m´2

`nq
|zk|

2´ q
r k

m´2
q1 .

On the other hand, since 2´ q
r ě q for m ě 2, it follows

n
ÿ

k“1

|zk|
2´ q

r k
m´2
q1 “ }z}

2´ q
r

`n
q,2´q{r

ď }z}
2´ q

r
`nq

This altogether gives

ÿ

jPJ pm,nq
|cjpP qzj| ď Krmpm´ 1q

1
r pm´ 2qar}P }Ppm`nr q}z}

m
`nq
.
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Chapter 4

Unconditionality in spaces of
polynomials

In this chapter we present the unconditionality on the context of spaces of polynomials. The
unconditional constant of the spaces of homogeneous polynomials and their dependence on
the number of variables and the degree of homogeneity will be crucial to study the Bohr
radius, and the sets of monomial convergence in the following chapters.

Recall that a Schauder basis pbnqnPN of a Banach space X is unconditional if given
panqnPN Ă C and x “

ř

ně1 anbn P X we have
ř

ně1 aσpnqbn P X for every σ P SN. This
is a very useful and qualitative description for the notion of unconditionality for a basis
but it only makes sense to study this on an infinite dimensional space, as it is trivially
fulfilled for every basis on the finite dimensional context. On the other hand this notion is
equivalent to the existence of some constant K ą 0 such that for every panqnPN Ă C and
every pεnqnPN Ă TN it holds

›

›

›

›

›

ÿ

ně1

εnanbn

›

›

›

›

›

X

ď K

›

›

›

›

›

ÿ

ně1

anbn

›

›

›

›

›

X

. (4.1)

For a fixed basis we may think of the best possible constant in (4.1). This last way
of describing the unconditionality of a basis gives a more quantitative approach. This
approach makes sense in the case of a finite dimensional Banach space, and it will be very
fruitful for PpmCnq.

4.1 Mixed unconditionality and the monomial basis

Now we define a slightly more general concept for spaces of m-homogeneous polynomials
on n complex variables. In the vector space PpmCnq there are many natural norms, in
particular the family of uniform norms for `np and `nq are different when p ‰ q. We will
define the concept of mixed unconditionality inspired in (4.1) but allowing the norms taken
in the right and the left side of the inequality to be different. The following definition makes
the last statement precise.
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Chapter 4. Unconditionality in spaces of polynomials

Definition 4.1.1. Let pPiqiPΛ be a Schauder basis of PpmCnq. For 1 ď p, q ď 8 and
n,m P N we define χp,qppPiqiPΛq “ χp,qppPiqiPΛ;PpmCnqq as the best constant C ą 0 such
that

›

›

›

›

›

ÿ

iPΛ

θiciPi

›

›

›

›

›

Ppm`nq q

ď C

›

›

›

›

›

ÿ

iPΛ

ciPi

›

›

›

›

›

Ppm`np q

, (4.2)

for every P “
ÿ

iPΛ

ciPi P PpmCnq and every choice of complex numbers pθiqiPΛ of modulus

one.
The pp, qq-mixed unconditional constant of PpmCnq is defined as

χp,qpPpmCnqq :“ inftχp,qppPiqiPΛq : pPiqiPΛ basis for PpmCnqu.

This idea was introduced by Defant, Maestre and Prengel in [DMP09, Section 5]. No-
tice that for p “ q the concept of mixed unconditionality coincides with the notion of
unconditionality over Ppm`np q as it is defined for Banach spaces. It will be interesting
and natural to study the mixed unconditional constant of the spaces PpmCnq as well as
the particular constant for the monomial basis pzjqjPJ pm,nq which can also be written as
pzαqαPΛpm,nq. It will become clear in the following chapters the deep connection between
χp,qppzjqjPJ pm,nq;PpmCnqq, the mixed Bohr radius and the sets of monomial convergence.

The following result shows that, in order to study the asymptotic behavior of the
mixed unconditional constants of PpmCnq, it is enough to understand what happens with
the monomial basis pzjqjPJ pm,nq. These can be seen as a sort extension of a result of Pisier
and Schütt [Pis78, Sch78] (see also [DDGM01, DF11, CG11]).

Theorem 4.1.2. Given m,n P N and 1 ď p, q ď 8 we have the following relation

χp,qpPpmCnqq ď χp,q
`

pzjqjPJ pm,nq
˘

ď 2mχp,qpPpmCnqq.

Our proof relies on Szarek’s approach [Sza81] combined with the following inequality
due to Bayart [Bay02] (see also [Wei80, DM15]).

Lemma 4.1.3 (Bayart’s inequality). Let P pzq “
ř

jPJ pm,nq cjzj be an m-homogeneous
polynomial in n-variables. Then

´

ÿ

jPJ pm,nq
|cj|

2
¯1{2

ď 2m{2
ż

Tn
|P pwq|dw, (4.3)

where Tn stands for the n-dimensional torus and dw is the normalized Lebesgue measure
on Tn.

Before giving the proof we define the following operator. For any w “ pw1 . . . , wnq P Tn
and any 1 ď p ď 8 we define the operator

T pw : Ppm`np q ÝÑ Ppm`np q
ÿ

jPJ pm,nq
ajzj ÞÝÑ

ÿ

jPJ pm,nq
ajzjwj,
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4.1. Mixed unconditionality and the monomial basis

which clearly has norm one.

We also need the following alternative characterization of the mixed unconditional
constant for a given basis.

Lemma 4.1.4. Let pPiqiPΛ be a basis for PpmCnq and pP 1i qiPΛ its dual basis (i.e., xP 1i , Pky “
δi.k). For 1 ď q, p ď 8 and n,m P N, χp,qppPiqiPΛq is exactly the best constant C ą 0 such
that

ÿ

iPΛ

|xP 1i , QyxQ
1, Piy| ď C}Q}Ppm`np q}Q

1}Ppm`nq q1 , (4.4)

for every Q P PpmCnq and Q1 P PpmCnq1.

Before proving Lemma 4.1.4 notice that given Q “ PpmCnq and pPiqiPΛ a basis for
PpmCnq with dual basis pP 1i qiPΛ it holds

Q “
ÿ

iPΛ

xP 1i , QyPi.

Proof. Let us name C1 to best constant fullfilling equation (4.4). We want to prove C1 “

χp,qppPiqiPΛq. We will first prove C1 ď χp,qppPiqiPΛq.

Fix Q P PpmCnq and Q1 P PpmCnq1 and, for i P Λ, let θi be the sign of xQ1, PiyxP
1
i , Qy

then we have

ÿ

iPΛ

|xP 1i , QyxQ
1, Piy| “

ÿ

iPΛ

θixP
1
i , QyxQ

1, Piy

ď

›

›

›

›

›

ÿ

iPΛ

θixP
1
i , QyPi

›

›

›

›

›

Ppm`nq q

}Q1}Ppm`nq q1

ď χp,qppPiqiPΛq

›

›

›

›

›

ÿ

iPΛ

xP 1i , QyPi

›

›

›

›

›

Ppm`np q

}Q1}Ppm`nq q1

“ χp,qppPiqiPΛq}Q}Ppm`np q}Q
1}Ppm`nq q1 .

Then χp,qppPiqiPΛq meets the inequality in (4.4) for every pair Q P PpmCnq and Q1 P
PpmCnq1, by the minimality of C1 it holds C1 ď χp,qppPiqiPΛq.

On the other hand, let pθiqiPΛ Ă T and pciqiPΛ Ă C. Take Q “
ř

iPΛ ciPi P PpmCnq and
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Q1 P PpmCnq1 such that }
ř

iPΛ θiciPi}Ppm`nq q “ Q1p
ř

iPΛ θiciPiq and }Q1}Ppm`np q1 “ 1 then

›

›

›

›

›

ÿ

iPΛ

θiciPi

›

›

›

›

›

Ppm`nq q

“ Q1

˜

ÿ

iPΛ

θiciPi

¸

“
ÿ

iPΛ

θicixQ
1, Piy

ď
ÿ

iPΛ

|θicixQ
1, Piy|

ď
ÿ

iPΛ

|xP 1i , QyxQ
1, Piy|

ď C1}Q}Ppm`np q}Q
1}Ppm`nq q1

“ C1

›

›

›

›

›

ÿ

iPΛ

ciPi

›

›

›

›

›

Ppm`np q

,

then C1 satisfies inequality in (4.2) and by the minimality of χp,qppPiqiPΛq we have

χp,qppPiqiPΛq ď C1.

Now we are able to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Let pPiqiPΛ be a basis for PpmCnq and pP 1i qiPΛ its dual basis.
Consider Q P PpmCnq and Q1 P PpmCnq1. Since 1 “ |xz1j, zjy| “ |

ř

iPΛxz
1
j, PiyxP

1
i , zjy|, we

have

ÿ

jPJ pm,nq
|xQ1, zjyxz

1
j, Qy| “

ÿ

jPJ pm,nq
|xQ1, zjyxz

1
j, Qy||

ÿ

iPΛ

xz1j, PiyxP
1
i , zjy|

ď
ÿ

iPΛ

ÿ

jPJ pm,nq
|xQ1, zjyxz

1
j, Qyxz

1
j, PiyxP

1
i , zjy|

ď
ÿ

iPΛ

`

ÿ

jPJ pm,nq
|xQ1, zjyxz

1
j, Piy|

2
˘

1
2
`

ÿ

jPJ pm,nq
|xz1j, QyxP

1
i , zjy|

2
˘

1
2

ď
ÿ

iPΛ

2m{2
ż

Tn
|

ÿ

jPJ pm,nq
xQ1, zjyxz

1
j, Piywj|dw ¨ 2m{2

ż

Tn
|

ÿ

jPJ pm,nq
xz1j, QyxP

1
i , zjyw̃j|dw̃

“
ÿ

iPΛ

2m
ż

Tn
|xpT qwq

˚pQ1q, Piy|dw ¨

ż

Tn
|xP 1i , T

p
w̃pQqy|dw̃

“ 2m
ż

TnˆTn

ÿ

iPΛ

|xpT qwq
˚pQ1q, PiyxP

1
i , T

p
w̃pQqy|dwdw̃

ď 2m
ż

TnˆTn
χp,qppPiqiPΛq}pT

q
wq
˚pQ1q}Ppm`nq q1}T

p
w̃pQq}Ppm`np qdwdw̃

ď 2mχp,qppPiqiPΛq}Q
1}Ppm`nq q1}Q}Ppm`np q,
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where we applied Cauchy-Schwarz for the second inequality, Bayart’s inequality (4.3) for
the third one and Lemma 4.1.4 for the basis pPiq for the next to last inequality. Using
Lemma 4.1.4 again but for the monomial basis pzjqjPJ pm,nq we have that

χp,q
`

pzjqjPJ pm,nq
˘

ď 2mχp,qppPiqiPΛq.

Since pPiqiPΛ is an arbitrary basis of PpmCnq we have

χp,qpPpmCnqq ď χp,q
`

pzjqjPJ pm,nq
˘

ď 2mχp,qpPpmCnqq,

which concludes the proof.

4.2 Link with monomial convergence

There is a very deep link between the notions of mixed unconditionality in spaces of poly-
nomials and monomial convergence. This connection was developed in [DMP09] and to
have a full version of it (which will be necessary in the future) we need to generalize the
concept of mixed unconditionality for the monomial basis.

Definition 4.2.1. Fix n,m P N and let Xn “ pCn, } ¨ }Xnq and Yn “ pCn, } ¨ }Ynq be two n
dimensional Banach spaces over C. We define χM pPpmXnq,PpmYnqq as the best constant
C ą 0 such that

›

›

›

›

›

›

ÿ

αPΛpm,nq

θαaαz
α

›

›

›

›

›

›

PpmYnq

ď C

›

›

›

›

›

›

ÿ

αPΛpm,nq

aαz
α

›

›

›

›

›

›

PpmXnq

, (4.5)

for every paαqαPΛpm,nq Ă C and every choice of complex numbers pθαqαPΛpm,nq of modulus
one.

Observe that for 1 ď p, q ď 8, if Xn “ `np and Yn “ `nq , it holds

χM pPpmXnq,PpmYnqq “ χp,qppz
αqαPΛpm,nqq.

We will present below two very important tools that show the intimate relationship
between the set of monomial convergence and the mixed unconditionality for the monomial
basis. Both results appear in [DMP09] and have more equivalences on their statements.

Theorem 4.2.2 ([DMP09]Theorem 5.1). Let X and Y be Banach sequence spaces, R Ă X
a bounded Reinhardt domain and FpRq a closed subfamily of H8pRq which contains all
the polynomials. The following are equivalent:

(1) rBY Ă monFpRq for some r ą 0.

(2) There is a constant C ą 0 depending only on X,Y such that for every m P N

sup
nPN

χM pPpmXnq,PpmYnqq ď Cm.
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Chapter 4. Unconditionality in spaces of polynomials

Recall that given X a Banach sequence space we denote Xn “ πnpXq Ă Cn to its
n-dimensional projection endowed with the induced norm.

Theorem 4.2.3. Let X and Y be Banach sequence spaces and m ě 2. Then the following
statements are equivalent:

(1) Y Ă monPpmXq.

(2) supnPN χM pPpmXnq,PpmYnqq ă 8.

Given X and Y Banach sequence spaces we say the asymptotic behaviour of the mono-
mial mixed unconditional constant χM pPpmXnq,PpmYnqq is hypercontractive on the ho-
mogeneity degree m whenever there is some CpX,Y, nq ą 0 which does not depend on m
such that

χM pPpmXnq,PpmYnqq ď CpX,Y, nqm, (4.6)

for every m,n P N.
Notice that one of the equivalences in Theorem 4.2.2 is that the asymptotic behaviour

of χM pPpmXnq,PpmYnqq is trivial on n and hypercontrative on m. On the other hand
Theorem 4.2.3 gives the trivial asymptotic behaviour of that constant on the number of
variables but it does not give hypercontractivity as one of the equivalences.

Remark 4.2.4. Given 1 ă p ď 2 thanks to Corollary 3.4.2 and Theorem 4.2.3 there is
Cpp,mq ą 0 such that for any n,m P N it holds

χp,qppz
αqαPΛpm,nqq ď Cpp,mq ă 8,

where q “ qppq “ pmp1q1.

Then, fixed m, the asymptotic behaviour of χM pPpm`np q,Ppm`nq qq when the number of
variables goes to infinity is trivial. But using Theorem 3.4.1 we can even say more.

Lemma 4.2.5. Given n,m P N and 1 ă p ď 2 there is Cp ą 0 such that

χp,qppz
αqαPΛpm,nqq ď Cmp ,

where q “ qppq “ pmp1q1.

Proof. Take P P PpmCnq and pθjqjPJ pm,nq. Fix z P B`nq by Theorem 3.4.1 we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPJ pm,nq
θjcjpP qzj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

jPJ pm,nq
|cjpP qzj| ď mdr}P }Ppm`nr q.

Taking supremum over z P B`nq it follows
›

›

›

›

›

›

ÿ

jPJ pm,nq
θjcjpP qzj

›

›

›

›

›

›

Ppm`nq q

ď mdr}P }Ppm`nr q,

thanks to its minimality χp,qppz
αqαPΛpm,nqq ď mdp . Oberve that

`

mdp
˘1{m

Ñ 0 when

m Ñ 8, then there is Cp ą 0 such that mdp ď Cmp , and this proves the statement of the
lemma.
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Notice that Lemma 4.2.5 gives hypercontractivity for χpmp1q1,pppz
αqαPΛpm,nqq. Also ob-

serve that the space `n
pmp1q1 depends on m, then we are no able to apply Theorem 4.2.2

to conclude, for example, something about monH8pB`pq. In Chapter 6 we will concen-
trate our efforts on finding the largest Banach sequence space independent of m for which
hypercontractive inequalities as in Theorem 3.4.1 hold for every m P N. This will give
us Theorem 6.2.3, the key to have a better characterization of monH8pB`rq and also
monHbp`rq for 1 ă r ď 2.

4.3 The pp, qq-mixed unconditionality constant

We now present some estimates for the asymptotic behavior of the pp, qq-mixed uncon-
ditional constant of PpmCnq. Note that in the case q “ p we recover the results from
[DDGM01].

Theorem 4.3.1. For each m P N we have
$

’

’

’

’

&

’

’

’

’

%

χp,qpPpmCnqq „ 1 for pIq : r1p `
m´1
2m ď 1

q ^
1
p ď

1
2 s or

rm´1
m ` 1

mr ă
1
q ^

1
2 ď

1
r s,

χp,qpPpmCnqq „ n
mp 1

p
´ 1
q
` 1

2
q´ 1

2 for pIIq : r1p `
m´1
2m ě 1

q ^
1
p ď

1
2 s,

χp,qpPpmCnqq „ n
pm´1qp1´ 1

q
q` 1

p
´ 1
q for pIIIq : r1´ 1

m `
1
mp ě

1
q ^

1
2 ă

1
p ă 1s.

To prove the theorem we need a lemma relating the pp, qq-mixed unconditional constant
with Amp,rpnq and Bm

r,qpnq from Chapter 2.

Lemma 4.3.2. Let 1 ď q, p ď 8, then we have

χp,qppz
αqαPΛpm,nqq ď Bm

r,qpnqA
m
p,rpnq for every 1 ď r ď 8. (4.7)

Proof. Let P pzq “
ÿ

jPJ pm,nq
cjzj be an m-homogeneous polynomial in n variables and

pθjqjPJ pm,nq be a sequence of complex numbers of modulus one, then

›

›

›

ÿ

jPJ pm,nq
θjcjzj

›

›

›

Ppm`nq q
ď Bm

r,qpnq
´

ÿ

jPJ pm,nq
|cj|

r
¯

1
r
ď Bm

r,qpnqA
m
q,rpnq

›

›

›

ÿ

jPJ pm,nq
cjzj

›

›

›

Ppm`np q
,

for every 1 ď r ď 8.

Before finally proving Theorem 4.3.1 it will be useful to state that for 2 ď p ď 8

`´
m´1
2m

` 1
p

¯´1 Ă monPpm`pq. (4.8)

This holds by (3.16) and using that `´
m´1
2m

` 1
p

¯´1 Ă `p ¨ `pm´1
2m q

´1
,8

.

We will also need the following monotonicity result for the mixed unconditional con-
stant.
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pIq

pIIq pIIIq

1
2

2m´1
2m

m´1
2m

1
p

1
q

Figure 4.1: Graphical overview of the mixed unconditional constant described in Theo-
rem 4.3.1.

Remark 4.3.3. Given 1 ď r ď q ď 8 and 1 ď p ď s ď 8

χs,rppz
αqαPΛpm,nqq ď χp,qppz

αqαPΛpm,nqq. (4.9)

This is true as, for P P PpmCnq and every pθαqαPΛpm,nq using (2.19) we have

}
ÿ

αPΛpm,nq

θαaαpP qz
α}Ppm`rq ď }

ÿ

αPΛpm,nq

θαaαpP qz
α}Ppm`qq

ď χp,q
`

pzαqαPΛpm,nq
˘

}P }Ppm`np q ď χp,q
`

pzαqαPΛpm,nq
˘

}P }Ppm`ns q.

By the minimality of the mixed unconditional constant we have the result.

Proof of Theorem 4.3.1. We will prove the results for χp,q
`

pzαqαPΛpm,nq
˘

, then by Theorem
4.1.2 will have the same behaviour for χp,qpPpmCnqq. The proof is divided in cases.

‚pIq : Let p ě 2. By the inequality in (4.8) we know that `qm Ă monpPpm`pqq where

1

qm
“
m´ 1

2m
`

1

p
,

thanks to Theorem 4.2.3 we have

χp,qm
`

pzαqαPΛpm,nq
˘

„ 1.
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4.3. The pp, qq-mixed unconditionality constant

On the other hand, if p ď 2, by Lemma 4.2.5 we know that

χp,qm
`

pzαqαPΛpm,nq
˘

„ 1,

where 1
qm
“ m´1

m ` 1
mp .

Therefore, by the monotonicity stated in Remark 4.3.3 it follows χp,q
`

pzαqαPΛpm,nq
˘

„ 1
in the region

pIq :

„

1

p
`
m´ 1

2m
ď

1

q
^

1

p
ď

1

2



or

„

m´ 1

m
`

1

mp
ă

1

q
^

1

2
ď

1

p



.

‚pIIq : We know by pIq that χp,qmpPpmCnqq „ 1, for 1
qm
“ 1

p `
m´1
2m . We now estimate

χp,8pPpmCnqq for 0 ď 1
p ď

1
2 . Take r “ 1. By Proposition 2.2.6 and Theorem 2.2.5 pCq

we have
Bm
r,8pnq „ 1 , Amp,rpnq „ n

mp 1
p
` 1

2
q´ 1

2 .

Using Lemma 4.3.2

χp,8pPpmCnqq ! n
mp 1

p
` 1

2
q´ 1

2 .

Take a polynomial P P PpmCnq, P “
ÿ

αPΛpm,nq

aαz
α with }P }Ppm`np q “ 1 and take signs

pεαqαPΛpm,nq. Therefore since
›

›

›

ÿ

αPΛpm,nq

εαaαz
α
›

›

›

Ppm`nqm q
ď χp,qmpPpmCnqq „ 1,

›

›

›

ÿ

αPΛpm,nq

εαaαz
α
›

›

›

Ppm`n8q
ď χp,8pPpmCnqq ! n

mp 1
p
` 1

2
q´ 1

2 ,

by (2.23) and using the multilinear interpolation Theorem 1.4.1 for the multilinear form
associated to

ř

αPΛpm,nq εαaαz
α, we have that for θ P p0, 1q and 1

q “
θ
qm
` 1´θ

8
,

}
ÿ

αPΛpm,nq

εαaαz
α}Ppm`nq q ! n

p1´θqrmp 1
p
` 1

2
q´ 1

2
s
“ n

mp 1
p
´ 1
q
` 1

2
q´ 1

2 .

For the lower bound let P pzq “
ÿ

αPΛpm,nq

εαz
α be a unimodular polynomial as in (2.20)

with p ě 2, then if w “ p 1
n1{q , . . . ,

1
n1{q q P S`q , we have

χp,qpPpmCnqq "

}
ÿ

αPΛpm,nq

zα}Ppm`nq q

}
ÿ

αPΛpm,nq

εαz
α}Ppm`np q

"

|
ÿ

αPΛpm,nq

wα|

n
mp 1

2
´ 1
p
q` 1

2

"
n
mp1´ 1

q
q

n
mp 1

2
´ 1
p
q` 1

2

“ n
mp 1

p
´ 1
q
` 1

2
q´ 1

2 .

‚pIIIq : For r12 ď
1
p ^

1
q ď

1
p s let us take 1

r “ 1 ´ 1
q . Note that 1

r ě 1 ´ 1
p . Then by

Proposition 2.2.6 and Theorem 2.2.5 pDq,

Bm
r,qpnq „ 1 , Amp,rpnq „ n

pm´1qp1´ 1
q
q` 1

p
´ 1
q ,
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and therefore
χp,qpPpmCnqq ! n

pm´1qp1´ 1
q
q` 1

p
´ 1
q .

As in pIIq we will use The Multilinear Interpolation Theorem: take a polynomial

P “
ÿ

αPΛpm,nq

aαz
α with }P }Ppm`np q “ 1 and take signs pεαqαPΛpm,nq. Therefore since

›

›

›

ÿ

αPΛpm,nq

εαaαz
α
›

›

›

Ppm`nqm q
ď χp,qmpPpmCnqq „ 1,

›

›

›

ÿ

αPΛpm,nq

εαaαz
α
›

›

›

Ppm`np q
ď χp,ppPpmCnqq „ n

pm´1qp1´ 1
p
q
,

we have, by (2.23) and Theorem 1.4.1, that for θ P p0, 1q and 1
q “

θ
qm
` 1´θ

p ,

›

›

›

ÿ

αPΛpm,nq

εαaαz
α
›

›

›

Ppm`nq q
! n

p1´θqrpm´1qp1´ 1
p
qs
“ n

pm´1qp1´ 1
q
q` 1

p
´ 1
q .

For the lower bound let P pzq “
ÿ

αPΛpm,nq

εαz
α be a unimodular polynomial as in (2.20)

with 1 ď p ď 2, we have

χp,qpPpmCnqq "

}
ÿ

αPΛpm,nq

zα}Ppm`nq q

}
ÿ

αPΛpm,nq

εαz
α}Ppm`np q

"
n
mp1´ 1

q
q

n
1´ 1

p

“ n
pm´1qp1´ 1

q
q` 1

p
´ 1
q .

The study we made in Theorem 4.3.1 assumes that the homogeneity degree of the poly-
nomials m is fixed. In particular we do not worry to deeply investigate the dependence
of the mixed unconditional constant on m. For example we do not care about hypercon-
tractivity in the bounds we get for this constant. In Chapter 5, Chapter 6 and Chapter 7
we explore objects and aspects of some families of holomorphic functions that will require
to look into this deeper comprehension of this constants. Hypercontractivity will be a key
property.
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Chapter 5

Bohr radius

While working to understand the Dirichlet series, Harald Bohr managed to connect them
with holomorphic functions in infinite many variables through what we call the Bohr trans-
form. This cycle of ideas brought Bohr to ask whether it is possible to compare the absolute
value of a power series in one complex variable with the sum of the absolute value of its
coefficients. He manged to prove the following result nowadays referred as Bohr’s inequal-
ity :

The radius r “ 1
3 is the largest value for which the following inequality holds:

ÿ

ně0

|an|r
n ď sup

zPD
|
ÿ

ně0

anz
n|, (5.1)

for every holomorphic function fpzq “
ř

ně0 anz
n bounded on the unit disk D.

As a matter of fact, Bohr’s paper [Boh14], compiled by G. H. Hardy from correspon-
dence, indicates that Bohr initially obtained the radius 1

6 , but this was quickly improved
to the sharp result by M. Riesz, I. Schur, and N. Wiener, independently. Bohr’s article
presents both his own proof and the one of his colleagues.

5.1 The n-dimensional Bohr radius

This interesting inequality was overlooked during many years until the end of the twentieth
century. In particular, Dineen and Timoney [DT89], Dixon [Dix95], Boas and Khavinson
[KB97], Aizenberg [Aiz00], Boas [Boa00] and Bombieri and Bourgain [BB04] retook this
work and use it in different contexts and/or generalize it. Several of these authors analyzed
if a similar phenomenon occurs for power series in many variables. For each Reinhardt
domain R, they introduced the notion of the Bohr radius KpRq as the biggest r ě 0 such
that for every analytic function fpzq “

ř

α aαz
α bounded on R, it holds:

sup
zPr¨R

ÿ

α

|aαz
α| ď sup

zPR
|fpzq|. (5.2)

Note that with this notation, Bohr’s inequality can be formulated simply as KpDq “ 1
3 .

Surprisingly, the exact value of the Bohr radius is unknown for any other domain. The
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Chapter 5. Bohr radius

central results of [KB97, Boa00] contained a (partial) successful estimate for the Bohr
radius for the complex unit balls of `np , 1 ď p ď 8. There the authors reached, for every
1 ď p ď 8, the following asymptotic bounds (see [Boa00, Theorem 3]),

1

3 3
?
e

ˆ

1

n

˙1´ 1
minpp,2q

ď KpB`np q ď 3

ˆ

logpnq

n

˙1´ 1
minpp,2q

. (5.3)

The gap between the upper and lower estimates in these papers leaded many efforts to
compute the exact asymptotic order of KpB`np q, for 1 ď p ď 8.

To obtain the upper bounds Boas [Boa00] generalized a theorem of Kahane-Salem-
Zygmund on random trigonometric polynomials [Kah93, Theorem 4 in Chapter 6], which
gives (by the use of a probabilistic argument) the existence of homogeneous polynomials
with “large coefficients” and “relatively small” uniform norm. This technique was refined
by Bayart in [Bay12] from where we extracted (2.20).

The lower bound needed different techniques. In [DGM03] Defant, Garćıa and Maestre
related the Bohr radius with the study of unconditionality in spaces of homogeneous poly-
nomials via some concepts of the local theory of Banach spaces (see also [DP06]). Although
at that moment this did not give optimal asymptotic bounds, it started a way with which
KpB`np q would be obtained.

They were Defant, Frerick, Ortega-Cerdá, Ounäıes and Seip [DFOC`11] who made
an incredible contribution in the problem giving the exact asymptotic value of KpB`n8q.
This work, in some sense, marked the path of the whole area over the last years. The
authors involved into the game the classical Bohnenblust-Hille inequality, which was used
to compute Bohr’s convergence width eighty years before. The groundbreaking progress
consisted in showing that Cm in Theorem 2.1.2 is in fact hypercontractive. They showed
Cm can be taken less than or equal to Cm for some absolute constant C ą 0. With this at

hand they proved that KpB`n8q behaves asymptotically as

b

logpnq
n .

In fact much more can be said about KpB`n8q: Bayart, Pellegrino and Seoane [BPSS14]
push these techniques further in an amazingly ingenious way to obtain that

lim
nÑ8

KpB`n8q
b

logpnq
n

“ 1.

Since KpB`n8q bounds from below the radius KpRq for any other Reinhardt domain
R, the range where p ě 2 easily follows. The solution of the case p ă 2, required quite
different methods. A celebrated theorem proved independently by Pisier [Pis86] and Schütt
[Sch78] allows to study unconditional bases in spaces of multilinear forms in terms of
some invariants such as the local unconditional structure or the Gordon-Lewis property.
These results have their counterpart in the context of spaces of polynomials as shown in
[DDGM01], replacing the full tensor product by the symmetric one.

Defant and Frerick [DF11] (continuing their previous work given in [DF06]) established
some sort of extension of Pisier-Schütt result to the symmetric tensor product with accurate
bounds and gave a new estimate on the Gordon-Lewis constant of the symmetric tensor
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5.2. Mixed Bohr radius

product. As a byproduct, they found the exact asymptotic growth for the Bohr radius on
the unit ball of the spaces `np .

The aforementioned results give the following relation for the Bohr radius.

Theorem 5.1.1. [DFOC`11, DF11] For 1 ď p ď 8, we have

KpB`np q „

ˆ

logpnq

n

˙1´ 1
mintp,2u

. (5.4)

The proof of the exact asymptotic behavior of KpB`np q given in [DF11] for p ă 2, as
mentioned before, use “sophisticated machinery” from the Banach space theory. Inspired
by recent results from the general theory of Dirichlet series, in [BDS19] Bayart, Defant and
Schlüters give upper estimates for the unconditional basis constants of spaces of polyno-
mials on `p spanned by finite sets of monomials, which avoid the use of this “machinery”.
This perspective gives a new and, in a sense, clearer proof of Theorem 5.1.1 for the case
p ă 2.

5.2 Mixed Bohr radius

In this chapter we aim to continue the study of the Bohr radius for mixed Reinhardt
domains. Let R and S be two Reinhardt domains in Cn. The mixed Bohr radius KpR,Sq
is defined as the biggest number r ě 0 such that for every analytic function fpzq “

ř

α aαz
α

bounded on R, it holds:

sup
zPr¨S

ÿ

α

|aαz
α| ď sup

zPR
|fpzq|. (5.5)

We will focus in the case where R and S are the closed unit balls of `np and `nq for
1 ď p, q ď 8. Note that KpB`np q using this new notation is just KpB`np , B`np q. The
following theorem provides the correct asymptotic estimates of KpB`np , B`nq q for the full
range of p’s and q’s.

Theorem 5.2.1. Let 1 ď p, q ď 8, with q ‰ 1. The asymptotic growth of the pp, qq-Bohr
radius is given by

KpB`np , B`nq q „

$

’

’

’

’

&

’

’

’

’

%

1 if (I): 2 ď p ď 8 ^ 1
2 `

1
p ď

1
q ,?

logpnq

n
1
2`

1
p´

1
q

if (II): 2 ď p ď 8 ^ 1
2 `

1
p ą

1
q ,

logpnq
1´ 1

p

n
1´ 1

q
if (III): 1 ď p ď 2.

For q “ 1 and every 1 ď p ď 8, KpB`np , B`nq q „ 1.

As for KpB`np q, the upper bounds are obtained using random polynomials with adequate
coefficients and relatively small norm [Boa00, DGM04, Bay12]. To obtain the lower bounds
the proof is divided in several cases. For p ă 2 we have combined an appropriate way to
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Chapter 5. Bohr radius

pIq „ 1

pIIq „

?
logpnq

n
1
2`

1
p´

1
q

pIIIq „ logpnq
1´ 1

p

n
1´ 1

q

1
2

1
2

1
p

1
q

Figure 5.1: Graphical overview of the mixed Bohr radius described in Theorem 5.2.1.

divide and distinguish certain subsets of monomials together with the upper estimates for
the unconditional basis constants of spaces of polynomials on `p spanned by finite sets
of monomials given in [BDS19]. The interplay between monomial convergence and mixed
unconditionality for spaces of homogeneous polynomials presented in [DMP09, Theorem
5.1.] (which, of course, gives information on the Bohr radius) is crucial for the case p ą
2. We have strongly used some recent inclusion for the set of monomial convergence
monH8pB`pq p ě 2 given in [DMP09, BDF`17]. Therefore, it is worth noting that the
techniques and results developed in the last years were fundamental for our proof.

Following the notation of [BDS19], given a subset J Ă J pm,nq, we call

J ˚ “ tj P J pm´ 1, nq : there is k ě 1, pj, kq P J u.

5.3 Homogeneous mixed Bohr radius and mixed uncondi-
tionality

Recall thatKpB`np , B`nq q stands for the n-dimensional pp, qq-Bohr radius. That is, KpB`np , B`nq q
denotes the greatest constant r ą 0 such that for every entire function f “

ř

α aαz
α in

n-complex variables, we have the following (mixed) Bohr-type inequality

sup
zPr¨B`nq

ÿ

α

|aαz
α| ď sup

zPB`np

|fpzq|.

74



5.3. Homogeneous mixed Bohr radius and mixed unconditionality

In the same way, the m-homogeneous mixed Bohr radius, KmpB`np , B`nq q, is defined as
the greatest r ą 0 such that for every P pzq “

ř

αPΛpm,nq aαz
α P PpmCnq it follows

sup
zPB`nq

ÿ

αPΛpm,nq

|aαz
α|rm “ sup

zPB`nq

|
ÿ

αPΛpm,nq

aαz
α| ď }P }Ppm`np q.

It is plain that KpB`np , B`nq q ď KmpB`np , B`nq q.

Remark 5.3.1.

KmpB`np , B`nq q “
1

χM pPpm`np q,Ppm`nq qq1{m
.

Proof. Given P P PpmCnq and for any pθαqαPΛpm,nq we have

}
ÿ

αPΛpm,nq

θαaαpP qz
α}Ppm`nq q ď }

ÿ

αPΛpm,nq

|aαpP qz
α|}Ppm`nq q

“ }
ÿ

αPΛpm,nq

|aαpP qz
α|pKmpB`np , B`nq qq

m}Ppm`nq q
1

pKmpB`np , B`nq qq
m

ď
1

pKmpB`np , B`nq qq
m
}P }Ppm`np q,

which leads to the inequality χM pPpm`np q,Ppm`nq qq1{m ď 1
KmpB`np ,B`nq q

. On the other hand,

for P P PpmCnq take θα “
aαpP q
|aαpP q|

. Then we have

}
ÿ

αPΛpm,nq

|aαpP qz
α|}Ppm`nq q “ }

ÿ

αPΛpm,nq

θαaαpP qz
α}Ppm`nq q

ď χM pPpm`np q,Ppm`nq qq}P }Ppm`np q,

or equivalently,

sup
zPB`nq

ÿ

αPΛpm,nq

|aαz
α|

˜

1

χM pPpm`np q,Ppm`nq qq1{m

¸m

ď }P }PpmCnq,

which means 1
χM pPpm`np q,Ppm`nq qq1{m

ď KmpB`np , B`nq q.

It will be useful to remember a classic result due to F. Wiener (see [KB97]) which asserts
that for every holomorphic function f written as the sum of m-homogeneous polynomials
as f “

ÿ

mě1

Pm ` a0 and such that supzPB`np
|fpzq| ď 1 it holds

}Pm}Ppm`np q ď 1´ |a0|
2, (5.6)

for every m P N.
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Chapter 5. Bohr radius

In general this inequality is presented for the uniform norm on the polydisk } ¨ }Ppm`n8q
(i.e., p “ 8), but this version easily follows by a standard modification of the original
argument (for z P B`np consider the auxiliary function g : Cn Ñ C given by gpwq :“ fpw¨zq).

The next lemma is an adaption of the case p “ q, see [DGM03, Theorem 2.2.] and
constitutes the basic link between Bohr radius and unconditional basis constants of spaces
of polynomials on the mixed context (p not necessarily equal to q).

Lemma 5.3.2. For every n P N and 1 ď p, q ď 8 it holds

1

3

1

supmě1 χM pPpm`np q,Ppm`nq qq1{m
ď KpB`np , B`nq q ď min

#

1

3
,

1

supmě1 χM pPpm`np q,Ppm`nq qq1{m

+

.

Proof. From Remark 5.3.1 we have

KpB`np , B`nq q ď inf
mě1

1

χM pPpm`np q,Ppm`nq qq1{m
“

1

supmě1 χM pPpm`np q,Ppm`nq qq1{m

and due to Bohr’s inequality we know KpDq “ 1
3 as it is clear that KpB`np , B`nq q ď KpDq

for every n P N the right hand side inequality holds. For the left hand side inequal-
ity let us take some holomorphic function f , without loss of generality let us assume
supzPB`np

|fpzq| “ 1, and consider its decomposition as a sum of m-homogeneous polyno-

mials f “
ÿ

mě0

Pm. For every m P N0 it holds Pmpzq “
ÿ

αPΛpm,nq

aαpfqz
α, thus taking

ρ “ supmě1 χM pPpm`np q,Ppm`nq qq1{m and using Remark 5.3.1 again it follows

›

›

›

ÿ

αPΛpm,nq

|aαpfq|

ˆ

z

ρ

˙α ›
›

›

Ppm`nq q
ď

›

›

›

ÿ

αPΛpm,nq

aαpfqz
α
›

›

›

Ppm`np q
.

Applying the above mentioned Wiener’s result for some w P B`nq we have that

ÿ

mě0

ÿ

αPΛpm,nq

|aαpfq|

ˆ

w

3ρ

˙α

ď |a0pfq| `
ÿ

mě1

1

3m

›

›

›

ÿ

αPΛpm,nq

aαpfqz
α
›

›

›

Ppm`np q

ď |a0pfq| `
ÿ

mě1

1

3m
p1´ |a0pfq|

2q

ď |a0pfq| `
1´ |a0pfq|

2

2
ď 1 “ sup

zPB`np

|fpzq|,

where last inequality holds as |a0pfq| ď supzPB`np
|fpzq| “ 1. The last chain of inequalities

and the maximality of mixed Bohr radius lead us to 1
3ρ ď KpB`np , B`nq q as we wanted to

prove.
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5.4. Upper bounds

The previous lemma shows that understanding KpB`np , B`nq q translates into seeing how

the constant χM pPpm`np q,Ppm`nq qq1{m behaves. Unfortunately, the results on the asymp-
totic growth of the (mixed) unconditional constant χM pPpm`np q,Ppm`nq qq (for fixed m) as
n Ñ 8 from Theorem 4.3.1 are not useful here. As it can be seen in Lemma 5.3.2, we
need to understand how the value of χM pPpm`np q,Ppm`nq qq1{m grows by moving both the
number of variables, n, and the degree of homogeneity, m. But beyond this, they give a
guideline of what to expect (at least what the different regions in Figure 5.1 should look
like).

The heuristic to interpret the different regions in Theorem 5.2.1 is the following: if we
assume that the homogeneity degree is very large (m Ñ 8) in Theorem 4.3.1 then the
graph in Figure 4.1 transforms into the one presented in Figure 5.1. All this, together with
the upper bounds that one gets after using classical random polynomials (see Section 5.4,
somehow the easy part) helped us define where to aim to prove lower bounds.

5.4 Upper bounds

Upper bounds constitute the easy part: we will use the classical probabilistic approach.

We will also need the following remark which is an easy calculus exercise.

Remark 5.4.1. For every positive numbers a, b ą 0 and n P N, the function f : Rą0 Ñ R
given by fpxq :“ xan

b
x attains its minimum at x “ logpnq ba .

Proof of the upper bounds of Theorem 5.2.1. Upper bounds for the case 1
p `

1
2 ď

1
q and

q “ 1 in Theorem 5.2.1 are trivial.

Suppose now 1
p `

1
2 ą

1
q and let pεαqαPΛpm,nq Ă t´1, 1u signs such that

›

›

›

ÿ

αPΛpm,nq

εα
m!

α!
zα
›

›

›

B`np

ď Km,p n
1´ 1

p ,

as in (2.20) where, in this case, Km,p ď C logpmq
1´ 1

pm!
1´ 1

p . Taking z0 “ p
1

n1{q , . . . ,
1

n1{q q P

B`q we can conclude that

n
mp1´ 1

q
q
“

ÿ

αPΛpm,nq

m!

α!

ˆ

1

n
1
q

˙m

ď

›

›

›

ÿ

αPΛpm,nq

|εα|
m!

α!
zα
›

›

›

B`nq

ď χM pPpm`np q,Ppm`nq qq
›

›

›

ÿ

αPΛpm,nq

εα
m!

α!
zα
›

›

›

B`np

ď χM pPpm`np q,Ppm`nq qq Km,p n
1´ 1

p

ď χM pPpm`np q,Ppm`nq qq C logpmq
1´ 1

pm!
1´ 1

p n
1´ 1

p .

77



Chapter 5. Bohr radius

For p ă 2 we have, by Stirling’s formula (2.16), that

1

χM pPpm`np q,Ppm`nq qq1{m
ď

´

Cn
1
p1 plogpmqm!q

1
p1

¯1{m 1

n
1
q1

ď C
1

n
1
q1

m
1
p1 n

1
p1m .

Thanks to Lemma 5.3.1, Remark 5.4.1 and the previous inequality

KpB`np , B`nq q ď C
1

n
1
q1

inf
mě1

m
1
p1 n

1
p1m ď C

logpnq
1
p1

n
1
q1

.

On the other hand, for p ě 2 and 1
p `

1
2 ą

1
q it follows

1

χM pPpm`np q,Ppm`nq qqq1{m
ď

´

Cn
1
2 plogpmqm!q

1
2

¯1{m 1

n
1
2
` 1
p
´ 1
q

ď C
1

n
1
2
` 1
p
´ 1
q

m
1
2n

1
2m .

Thus minimizing m
1
2n

1
2m as in the previous case we get,

KpB`np , B`nq q ď C

a

logpnq

n
1
2
` 1
p
´ 1
q

,

as we wanted to prove.

5.5 Lower bounds

For the proof of the lower bounds we need to consider four different cases. We begin with
the case q “ 1 and the case p ď q, which are the easy ones. Then we study the case
1 ă q ď p ď 2 where we use tools from unconditionality and finally the case p ě 2 where
the key tool is monomial convergence.

5.5.1 The case q “ 1

By [Aiz00], KpB`n1 q „ 1. Thus, for any fpzq “
ř

α aαz
α, it follows that

sup
zPKpB`n1

q¨B`n1

ÿ

α

|aαz
α| ď sup

zPB`n1

|fpzq| ď sup
zPB`np

|fpzq|,

which implies that KpB`np , B`n1 q ě KpB`n1 q „ 1.
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5.5.2 The case p ď q

For this case we will strongly use Theorem 5.1.1. The case p ď q is an easy corollary of
this result. For any P pzq “

ÿ

αPΛpm,nq

aαz
α, it follows that

›

›

›

ÿ

αPΛpm,nq

|aα|z
α
›

›

›

Ppm`nq q
ď n

mp 1
p
´ 1
q
q
›

›

›

ÿ

αPΛpm,nq

|aα|z
α
›

›

›

Ppm`np q

ď n
mp 1

p
´ 1
q
q
KpB`np q

´m
›

›

›

ÿ

αPΛpm,nq

aαz
α
›

›

›

Ppm`np q
,

which implies that KmpB`np , B`nq q ě KpB`np qn
1
q
´ 1
p for every m P N. Using Lemma 5.3.2 and

Theorem 5.1.1 we have, for p ď 2,

KpB`np , B`nq q ě
1

3
n

1
q
´ 1
pKpB`np q „ n

1
q
´ 1
p

ˆ

logpnq

n

˙1´ 1
p

“
logpnq1´1{p

n1´1{q
,

and, for p ě 2,

KpB`np , B`nq q ě
1

3
n

1
q
´ 1
pKpB`np q „ n

1
q
´ 1
p

ˆ

logpnq

n

˙1´ 1
2

“

a

logpnq

n
1
2
` 1
p
´ 1
q

.

This concludes the proof.

5.5.3 The bounded decomposition. The case 1 ă q ă p ď 2.

To prove the lower bound is correct in this range of values for p and q we introduce the first
monomial decomposition of the thesis, the bounded decomposition. In this case we break
the whole set of monomials pzjqjPJ pm,nq into subsets depending on the maximum degree of
its variables. This partition allows us to manage some technical bounds in a subtler way.

The next lemma is the first step we need to prove the lower bound on Theorem 5.2.1
in this case. A fundamental piece on its proof will be the BDS inequality.

Lemma 5.5.1. Let 1 ď q ă p ď 2. Then we have

χM pPpm`np q,Ppm`nq qq ď me
1`m´1

p

¨

˝

ÿ

jPJ pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

.

Proof. Fix P P Ppm`np q and u P `nq . Then, by the BDS inequality in (2.9), for any j P
J pm,nq˚,
¨

˝

ÿ

k: pj,kqPJ pm,nq
|cpj,kqpP q|

p1

˛

‚

1{p1

“

¨

˝

n
ÿ

k“jm´1

|cpj,kqpP q|
p1

˛

‚

1{p1

ď me
1`m´1

p |j|1{p}P }Ppm`np q.
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Now applying the above inequality, Hölder’s inequality (two times) and the multinomial
formula we have

ÿ

jPJ pm,nq
|cjpP q||uj| “

ÿ

jPJ pm,nq˚

¨

˝

ÿ

k: pj,kqPJ pm,nq
|cpj,kq||uj||uk|

˛

‚

ď
ÿ

jPJ pm,nq˚
|uj|

¨

˝

ÿ

k: pj,kqPJ pm,nq
|cpj,kq|

q1

˛

‚

1{q1
˜

ÿ

k

|uk|
q

¸1{q

ď
ÿ

jPJ pm,nq˚
|uj|

¨

˝

ÿ

k: pj,kqPJ pm,nq
|cpj,kq|

p1

˛

‚

1{p1

}u}q

ď me
1`m´1

p

ÿ

jPJ pm,nq˚
|j|1{p|uj|}u}q}P }Ppm`np q

ď me
1`m´1

p

¨

˝

ÿ

jPJ pm,nq˚
|j||uj|

q

˛

‚

1{q¨

˝

ÿ

jPJ pm,nq˚
|j|p1{p´1{qqq1

˛

‚

1{q1

}u}q}P }Ppm`np q

ď me
1`m´1

p

¨

˝

ÿ

jPJ pm´1,nq

|j||uj|
q

˛

‚

1{q¨

˝

ÿ

jPJ pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

}u}q}P }Ppm`np q

“ me
1`m´1

p

¨

˝

ÿ

jPJ pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

}u}mq }P }Ppm`np q,

which gives the desired inequality.

The key to prove the lower bound is to obtain good bounds for the sum on the right
hand side of the previous lemma.

Lemma 5.5.2. Let 1 ă q ď p ď 2, for large enough n it follows

¨

˝

ÿ

jPJ pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

ď Cm
nm{q

1

logpnqm{p1
,

for every m P N.

With this at hand it is easy to prove the remaining lower bounds of the case p ď 2 of
the main theorem.

Proof of the lower bound of the case 1 ă q ă p ď 2 on Theorem 5.2.1. Thanks to Lemma
5.3.2 it is enough to prove that

logpnq1´1{p

n1´1{q
!

1

supmě1 χM pPpm`np q,Ppm`nq qq1{m
“ inf

mě1

1

χM pPpm`np q,Ppm`nq qq1{m
, (5.7)
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5.5. Lower bounds

which follows by Lemma 5.5.1 and Lemma 5.5.2.

The proof of Lemma 5.5.2 will require some hard work and the insight given by an
specific monomial decomposition, the bounded decomposition. The idea of this decomposi-
tion is to split the set of monomials on those which have the degrees of all their variables
bounded (in some sense) and those that don’t.

The bounded monomial decomposition: We define for any 1 ď k ď m the k-
bounded index set as

Λkpm,nq “ tα P Λpm,nq : αi ď k for all 1 ď i ď nu.

Recall that F is the bijective mapping connecting Λpm,nq and J pm,nq, we denote

Jkpm,nq “ F´1pΛkpm,nqq,

for the corresponding k-bounded index set seen in J pm,nq. Observe that for any 1 ď k ď m
and j P Jkpm,nq the following inequalities hold:

|j| ě
m!

k!r
m
k

s
ě

m!

k!
m
k
`1
ě Cm

mm

km`k
, (5.8)

¨

˝

ÿ

jPJ pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

ď m1{q1 max
k“1,...,m´1

!

¨

˝

ÿ

jPJkpm´1,nqXJ c
k´1pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1
)

.

(5.9)
Finally,

|J ck´1pm´ 1, nq| ď n|J pm´ k ´ 1, nq| (5.10)

ď n

ˆ

n`m´ k ´ 2

m´ k ´ 1

˙

ď n
pn`m´ k ´ 2qm´k´1

pm´ k ´ 1q!
,

since j P J ck´1pm´1, nq requires that at least one of the variables is at the power of k (note
that this bound is excessive, given that there are many repetitions at the time of counting,
but it will be adequate for our purposes). For the particular case m ď n we can extract
from inequality (5.10) the fact that

|J ck´1pm´ 1, nq| ď 2m
nm´k

pm´ k ´ 1q!
. (5.11)

We are now ready to prove Lemma 5.5.2.

Proof of Lemma 5.5.2. Suppose that n is large enough in order to have

logpnqc ď n, (5.12)

where c ą 0 is a constant that will be specified later.
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Chapter 5. Bohr radius

We will split the proof in two cases.

‚ piq m ď logpnq
q1

p1 .

Note that if we take in (5.12) c ě q1

p1 , then m ď n. Thus, by (5.8) and (5.11), we have
for each 1 ď k ď m´ 1,

¨

˝

ÿ

jPJkpm´1,nqXJ c
k´1pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

ď Cm|J ck´1pm´ 1, nq|1{q
1 k
pm`kqp 1

q
´ 1
p
q

m
mp 1

q
´ 1
p
q

ď Cm
ˆ

nm´k

pm´ k ´ 1q!

˙

1
q1 k

pm`kqp 1
q
´ 1
p
q

m
mp 1

q
´ 1
p
q
.

Thus, by (5.9), we will prove the lemma if we are able to show that this last expression

is ď Cm nm{q
1

logpnqm{p
1 , for some constant C ą 0. Therefore, it suffices to prove that, if β :“

p1
q ´

1
pqq

1,

kβpm`kq

pm´ k ´ 1q!mβm
ď Cm

nk

logpnqmpβ`1q
. (5.13)

Let us first suppose that k ě mintm{2, m3β u “ dm for some 0 ă d ă 1. Note that the left

hand side is less than or equal to mβm, which is ď ndm

logpnqmpβ`1q if we choose cd ą βp q
1

p1`1q`1

in (5.12) because m ď logpnq
q1

p1 . Thus we have (5.13) for k ě dm.

For k ď dm, (5.13) is equivalent to

kβpm`kq

mm´kmβm
ď Cm

nk

logpnqmpβ`1q
, (5.14)

for some constant C. If k “ 1 (5.14) is trivially satisfied. Let 1 ă k ď dm. Using
elementary calculus, it can be seen that kβkmk{km ď km{3mk{km “ mk{k2m{3 ! 1 for
k ď m{2. Thus, it is enough to show that

kpβ`1qm

mpβ`1qm
ď Cm

nk

logpnqmpβ`1q
.

Taking logarithms, we see that it suffices to prove that, for some constant C ą 0 we have,

fp
k logpnq

m
q ´

k logpnq

m
ď C, (5.15)

where fptq “ pβ`1q logptq. Note that there is some t0 “ t0pβq ě 1 such that fptq ď t1{2 for

every t ě t0. If k logpnq
m ě t0 then fpk logpnq

m q ´
k logpnq
m ď

b

k logpnq
m ´

k logpnq
m ď 0, and (5.15)

is satisfied. On the other hand, if k logpnq
m ď t0 then (5.15) is fulfilled taking C “ fpt0q.
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5.5. Lower bounds

‚ piiq For m ě logpnq
q1

p1 we just bound |j|p1{p´1{qqq1 by 1, thus we have by Stirling
formula,

¨

˝

ÿ

jPJ pm´1,nq

|j|p1{p´1{qqq1

˛

‚

1{q1

ď |J pm´ 1, nq|1{q
1

“

ˆ

pn`m´ 2q!

pm´ 1q!pn´ 1q!

˙1{q1

ď Cm

˜

ˆ

1`
n

m´ 1

˙m´1
¸1{q1

ď Cm

¨

˝1`
n

logpnq
q1

p1

˛

‚

m´1
q1

ď Cm
n
m
q1

logpnq
m
p1
,

which concludes the proof.

5.5.4 The case p ě 2

For the remaining cases it will be crucial the monomial convergence point of view and its
connection with the mixed unconditionality.

Proof of the case 1
2 `

1
p ď

1
q on Theorem 5.2.1. By equation (3.9) if 1

q ě
1
r “

1
p `

1
2 and

p ě 2 it follows

`r XB`p Ă monH8pB`pq.

Since q ď r ď p, then B`q Ă B`r Ă B`p and then B`q Ă `r X B`p Ă monH8pB`pq. Finally
by Theorem 4.2.2 we have that there is some constant C “ Cpp, qq ą 0 such that for every
n P N and p, q fulfilling the previous conditions it holds

1

sup
mě1

´

χM pPpm`np q,Ppm`nq qq
¯1{m

ě C.

As KpB`np , B`nq q ď 1 for every 1 ď p, q ď 8, the previous inequality and Lemma 5.3.2 lead

us to the assertion that for 1
q ě

1
p `

1
2

KpB`np , B`nq q „ 1. (5.16)
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Chapter 5. Bohr radius

Recall from Theorem 3.2.3 that

B “

$

&

%

z P `8 : lim sup
nÑ8

1
a

logpnq

˜

n
ÿ

j“1

|z˚j |
2

¸1{2

ă 1

,

.

-

Ă monH8pB`8q.

Consider now the Banach space

X8 “

$

&

%

z P `8 : sup
ně2

1
a

logpnq

˜

n
ÿ

j“1

|z˚j |
2

¸1{2

ă 8

,

.

-

, (5.17)

endowed with the norm }z}X8 “ sup
ně2

1
a

logpnq

˜

n
ÿ

j“1

|z˚j |
2

¸1{2

. It is not difficult to see that

this is Banach sequence space. Observe also that

BX8 Ă B Ă monH8pB`8q. (5.18)

By Theorem 4.2.2 and expression (5.18) we have for some C “ Cppq ą 0

sup
ně2

χM pPpm`n8q,PpmpX8qnqq ď Cm. (5.19)

Note that the norm in pX8qn is given by

}pz1, . . . , znq}pX8qn “ sup
2ďkďn

1
a

logpkq

˜

k
ÿ

j“1

|z˚j |
2

¸1{2

.

To complete the study of the mixed Bohr radius for p ě 2 it remains to understand the
case 1

q ă
1
2 `

1
p .

Proof of the case 1
q ă

1
2 `

1
p and p ě 2 on Theorem 5.2.1. Fixm P N and take P P PpmCnq,

P pzq “
ÿ

αPΛpm,nq

aαz
α. By Lemma 5.3.2, it suffices to show that there exists some C ą 0

such that for every z P B`mq it holds

ÿ

αPΛpm,nq

|aαz
α| ď Cm

˜

n
1
2
` 1
p
´ 1
q

a

logpnq

¸m

}P }Ppm`np q.

Consider now y “ pz
p
p`2

1 , . . . , z
p
p`2
n q and w “ pz

2
p`2

1 , . . . , z
2
p`2
n q. It is easy to see that

z “ y ¨ w “ py1w1, . . . , ynwnq, and thus, by (5.19) and Remark 3.1.5, we have

ÿ

αPΛpm,nq

|aαz
α| “

ÿ

αPΛpm,nq

|aαw
αyα| ď Cm}y}mpX8qn}Pw}Ppm`n8q

ď Cm}y}mpX8qn}w}
m
`np
}P }Ppm`np q.
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It remains to check that

}y}pX8qn}w}`np ď C
n

1
2
` 1
p
´ 1
q

a

logpnq
.

To start, let 1 ď k ď n then

}py˚1 , . . . , y
˚
k q}`k2

“ }pz˚1 , . . . , z
˚
k q}

p
p`2

`k2p
p`2

ď

´

}pz˚1 , . . . , z
˚
k q}`kq

k
1
p
` 1

2
´ 1
q

¯

p
p`2

ď }z}
p
p`2

`nq

´

k
1
p
` 1

2
´ 1
q

¯

p
p`2

,

so we have

}y}pX8qn “ sup
2ďkďn

1
a

logpkq
}py˚1 , . . . , y

˚
k q}`k2

ď sup
2ďkďn

1
a

logpkq
}z}

p
p`2

`nq

´

k
1
p
` 1

2
´ 1
q

¯

p
p`2

ď C}z}
p
p`2

`nq

n
1
2
´ 1
q

p
p`2

a

logpnq
.

On the other hand,

}w}`np “ }z}
2

2`p

`n2p
p`2

ď }z}
2

2`p

`nq
n

´

1
2
` 1
p
´ 1
q

¯

2
2`p “ }z}

2
2`p

`nq
n

1
p
´ 1
q

2
2`p .

Finally,

}y}pX8qn}w}`np ď C}z}
p
p`2

`nq

1
a

logpnq
n

1
2
´ 1
q

p
p`2 }z}

2
2`p

`nq
n

1
p
´ 1
q

2
2`p

“ C}z}`nq
n

1
2
` 1
p
´ 1
q

a

logpnq
,

as we needed.
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Chapter 6

Monomial convergence for Hbp`rq

In this chapter we return to the study of monomial convergence. In particular we focus
on the sets of monomial convergence for Hbp`rq. In Theorem 6.2.1 we provide a complete
characterization of the set of monomial convergence of the space of holomorphic functions
of bounded type for 1 ă r ď 2. In Section 6.3 we do so for monHbp`r,sq and give very tight
lower and upper bounds for monHbp`r,sq in particular with r “ s.

The main tool developed is a novel decomposition of the multi-indices, which allows
us to construct any multi-index from two very particular classes (namely, the thetahedral
and the even ones). A proper treatment for each of these classes provides bounds for the
sum of all the monomials that allow us to prove hypercontractive behaviour for the mixed
unconditionality constant between the adequate spaces. This technique is quite different
from the usual one, which involves the partition of the multi-index set into suitable subsets,
as we did in Section 5.5.3 (see also, for example [DFOC`11, BDS19, BDF`17, GMMa,
OCOS09]). The difference now is that one studies two subclasses of multi-indices which
decompose all of them (in the fashion of the fundamental theorem of arithmetic, to make
an analogy) and manages to conclude something about the entire sum.

6.1 The factorization decomposition

Now we present the second monomial decomposition: the factorization decomposition. This
decomposition will be the key tool for the lower inclusions in the whole chapter. It will be
needed later in the sequel.

Let us be more precise and introduce some notation. A multi-index α is tetrahedral if
all its entries are either 0 or 1. We consider the set of tetrahedral multi-indices

ΛT pm,nq “
 

α P Λpm,nq : αi P t0, 1u
(

.

Notice that the set of tetrahedral multi-indices is exactly the set of 1-bounded index we
introduced in Section 5.5.3, i.e., ΛT pm,nq “ Λ1pm,nq.

A multi-index is called even if all its non-zero entries are even (note that this forces
the multi-index to have even order). We consider then the set

ΛEpm,nq “
 

α P Λpm,nq : αi is even for every i “ 1, . . . , n
(

.
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Chapter 6. Monomial convergence for Hbp`rq

Observe that for every α P ΛEpm,nq there is a unique β P Λpm{2, nq such that α “ 2β.

Remark 6.1.1. Given α P ΛpM,Nq define αT (the tetrahedral part) and αE (the even
part) as

`

αT
˘

i
“

#

1 if αi is odd

0 if αi is even
and

`

αE
˘

i
“

#

αi ´ 1 if αi is odd

αi if αi is even
.

If 0 ď k ď M is the number of odd entries in α, then clearly αT P ΛT pk,Nq and αE P
ΛEpM ´ k,Nq and α “ αT ` αE . As pαEqi ď αi for every i then αE ! ď α!. On the other
hand, αT ! “ 1, then αT !αE ! ď α!, and

|rαs| “
M !

α!
ď

M !

αT !αE !
“

M !

pM ´ kq!k!

k!

αT !

pM ´ kq!

αE !
“

ˆ

M

k

˙

|rαT s||rαEs| ď 2M |rαT s||rαEs|.

6.2 The case 1 ă r ď 2.

We can now describe the set of monomial convergence of Hbp`rq for 1 ă r ď 2. It happens
to be a Marcinkiewicz space mΨr where the symbol is given by

Ψrpnq :“ logpn` 1q1´
1
r , (6.1)

for n P N0.

Theorem 6.2.1. For 1 ă r ď 2,

monHbp`rq “ mΨr “

#

z P CN : sup
ně1

řn
k“1 z

˚
k

logpn` 1q1´
1
r

ă 8

+

.

We handle the upper and the lower inclusions separately in the following two sections.

6.2.1 The upper inclusion monHbp`rq Ă mΨr

Typically, the way to prove upper inclusions for a set of monomial convergence goes through
providing polynomials satisfying certain convenient properties. Over the last years prob-
abilistic techniques have shown to be extremely helpful to find such polynomials. This
is, for instance, what is done in [BDF`17, Theorem 2.2], where the probabilistic device is
the well known Kahane-Salem-Zygmund inequality. Here we follow essentially the same
lines, but using the polynomials provided by Bayart given in 2.20. These polynomials are
the main tool for the proof of the upper inclusion. We also need the following result, an
extension of [DMP09, Lemma 4.1] whose proof follows the same lines.

Lemma 6.2.2. Let R be a Reinhardt domain in a Banach sequence space X and let
pF , pqnqnq be a Fréchet space of holomorphic functions continuously included in HbpRq.
Then, for each z P monpFq, there exist C ą 0 and n such that

ÿ

αPNpNq0

|cαz
α| ď Cqnpfq.
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6.2. The case 1 ă r ď 2.

for every f P F . In particular, if z P monHbpXq, there exists C ą 0, such that
ÿ

αPΛpm,nq

|cαpP qz
α| ď Cm}P }PpmXq,

for every P P PpmXq.

Proof. Given z P Rmeeting (3.6) it clearly holds
ř

αPNpNq0
|aαpfqz

α| ă 8 for every f P FpRq.
For the other implication consider the linear mapping

Φz : FpRq Ñ `1

´

NpNq0

¯

f ÞÑ paαpfqz
αq
αPNpNq0

,

which is well define as z P monFpRq. For fn P FpRq such that fn Ñ f P FpRq and

Φzpfnq Ñ b “ pbαqαPNpNq0
we have, for any α P NpNq0 , that aαpfnq Ñ bα. It is easy to see

Remark 3.1.3 also holds for HbpXq with the same proof, using it we have aαpfnq Ñ aαpfq,
and due to the uniqueness of the limit b “ Φzpfq the graph of Φz is closed. Using the
closed graph theorem for Frechet spaces it follows Φz is continuous, which exactly what we
wanted. Let us apply this to the case of P being an m-homogeneous polynomial in X and
z P monHbpXq. Since P P HbpXq and the seminorms in HbpXq are given by p} ¨ }n¨BX qnPN,
for some fixed N P N and C̃ ą 1 we have that

ÿ

αPΛpm,nq

|cαpP qz
α| ď C̃}P }N ¨BX ď C̃Nm}P }BX ,

taking C “ C̃N we have what we wanted to prove.

We now have everything at hand to proceed with the proof of the upper inclusion.

Proof of the upper inclusion in Theorem 6.2.1. Fix 1 ă r ď 2 and choose z P monHbp`rq.
Now fix n,m, choose signs as in (2.20) and define the polynomial P pwq :“

ř

αPΛpm,nq εα
m!
α!w

α.
By Corollary 3.3.6 we know that z˚ P monHbp`rq. Using first the multinomial formula,
then Lemma 6.2.2 and finally (2.20) we have
˜

n
ÿ

j“1

|z˚j |

¸m

“
ÿ

αPΛpm,nq

m!

α!
|pz˚qα| “

ÿ

αPΛpm,nq

ˇ

ˇ

ˇ
εα
m!

α!
pz˚qα

ˇ

ˇ

ˇ

ď Cmz˚ sup
uPB`nr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

αPΛpm,nq

εα
m!

α!
uα

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ppm`nr q

ď Cmz˚,rplogpmqm!nq1´
1
r .

(6.2)

Taking the power 1{m and using Stirling’s formula (m! ď
?

2πme
1

12mmme´m) yield

n
ÿ

j“1

|z˚j | ď Cz˚,r

”

logpmq
1
m p2πmq

1
2m e

1
12m2

m

e
n

1
m

ı1´ 1
r
. (6.3)
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Finally, choosing m “ tlogpn ` 1qu gives that the term 1

logpn`1q1´
1
r

řn
k“1 |z

˚
n| (for every

n ě 2) is bounded independently of n, so z P mΨr .

6.2.2 The lower inclusion mΨr Ă monHbp`rq

We face now the proof of the lower inclusion in Theorem 6.2.1. The main tool is the
following hypercontractive inequality , the proof of which requires some work, that we
perform all along this section.

Theorem 6.2.3. Fix 1 ă r ď 2. For every ε ą 0 there is Cr “ Crpεq ą 0 such that
for every m,n P N, every m-homogeneous polynomial in n complex variables P and every
z P Cn, we have

ÿ

jPJ pm,nq
|cjpP qz

˚
j | ď Crpεqm

2` 1
r pp1` εq2eq

m
r }id : mΨr Ñ `r}

m}z}mmΨr
}P }Ppm`nr q .

Before we start with the proof of this result, let us see how, having it at hand, we can
prove the lower inclusion we are aiming at.

Proof of the lower inclusion in Theorem 6.2.1. Choose z P mΨr and let us see that z P
monHbp`rq. By Corollary 3.3.6 we may assume without loss of generality z “ z˚. Given f P
Hbp`rq let us denote Pmpfq for the m-homogeneous part of its Taylor expansion (Pmpfq “
dmf
m! p0q as in Theorem 1.3.1) and Theorem 6.2.3 (with ε “ 1) gives

ÿ

αPNpNq0

|cαpfqz
α| “ sup

nPN

8
ÿ

m“0

ÿ

jPJ pm,nq
|cjpfqzj|

ď sup
nPN

8
ÿ

m“0

Crm
2` 1

r p4eq
m
r }id}m}z}mmΨr

sup
uPB`nr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPJ pm,nq
cjpfquj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ Cr

8
ÿ

m“0

pmp2`
1
r
q 1
m p4eq

1
r }id}}z}mΨr

qm}Pmpfq}Ppm`rq.

Let us see that this sum is finite. Take R ą supm
`

mp2`
1
r
q 1
m p4eq

1
r }id}}z}mΨr

˘

, then by the
homogeneity of Pmpfq

8
ÿ

m“0

pmp2`
1
r
q 1
m p4eq

1
r }id}}z}mΨr

qm}Pmpfq}Ppm`rq

“

8
ÿ

m“0

˜

mp2`
1
r
q 1
m p4eq

1
r }id}}z}mΨr

R

¸m

sup
wPR¨B`r

|Pmpfqpwq|

ď

8
ÿ

m“0

˜

mp2`
1
r
q 1
m p4eq

1
r }id}}z}mΨr

R

¸m

sup
wPR¨B`r

|fpwq| ă 8,

where the last step is due to Cauchy’s inequality. This completes the proof.
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6.2. The case 1 ă r ď 2.

We start now the way to the proof of Theorem 6.2.3. We begin with a simple remark.

Remark 6.2.4. If z P mΨr , then

n|z˚n| ď
n
ÿ

l“1

z˚l ď }z}mΨr
logpn` 1q

1
r1 .

That is

|z˚n| ď }z}mΨr

logpn` 1q
1
r1

n

for every n P N. This gives

n
ÿ

j“1

|zj |
r ď

n
ÿ

j“1

|z˚j |
r ď }z}rmΨr

n
ÿ

j“1

logpj ` 1q
r
r1

jr
.

This implies }id : mΨr Ñ `r} ď
´

ř8
j“1

logpj`1q
r
r1

jr

¯1{r
(note that this series is convergent

for 1 ă r).

The Bayart-Defant-Schlüters inequality in Theorem 2.1.7 will be fundamental here as
it has been proving Theorem 3.4.1 and Theorem 5.2.1 in the case 1 ă q ă p ď 2.

Lemma 6.2.5. Let 1 ă r ď 2, there is Ar ą 0 such that for every m,n P N, every
P P PpmCnq and every decreasing z P Cn we have

ÿ

jPJ pm,nq
|cjpP qzj| ď Arm

1` 1
r e

m
r }z}2mΨr

¨

˝

n
ÿ

k“1

logpk ` 1q
2
r1

k1` 1
r1

ÿ

iPJ pm´2,kq

|zi||i|
1
r

˛

‚}P }Ppm`nr q.

Proof. Consider P “
ř

jPJ pm,nq cjpP qzj P PpmCnq and z P Cn decreasing. Using first
Hölder’s inequality and then (2.8) we have

ÿ

jPJ pm,nq
|cjpP qzj| “

ÿ

jPJ pm´1,nq

n
ÿ

jm“jm´1

|cpj,jmqpP qzjzjm |

ď
ÿ

jPJ pm´1,nq

|zj|
´

n
ÿ

jm“jm´1

|cpj,jmqpP q|
r1
¯

1
r1
´

n
ÿ

jm“jm´1

|zjm |
r
¯

1
r

ď e1´ 1
rme

m
r }P }Ppm`rq

ÿ

jPJ pm´1,nq

|zj||j|
1
r

´

n
ÿ

jm“jm´1

|zjm |
r
¯

1
r

“ e1´ 1
rme

m
r }P }Ppm`rq

n
ÿ

jm´1“1

|zjm´1 |
ÿ

iPJ pm´2,jm´1q

|zi||pi, jm´1q|
1
r

´

n
ÿ

jm“jm´1

|zjm |
r
¯

1
r

ď e1´ 1
rme

m
r }P }Ppm`rqpm´ 1q

1
r

n
ÿ

jm´1“1

|zjm´1 |

´

n
ÿ

jm“jm´1

|zjm |
r
¯

1
r

ÿ

iPJ pm´2,jm´1q

|zi||i|
1
r ,

(6.4)
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where the last inequality is due to the fact that |pi, jm´1q| ď pm ´ 1q|i| for every i P
J pm´ 2, jm´1q.

We now bound the factor |zjm´1 |

´

řn
jm“jm´1

|zjm |
r
¯

1
r
. For each 1 ď j ď n we use

Remark 6.2.4 to obtain (note that r
r1 ´ 1 “ r ´ 2 ď 0).

|zj |
´

n
ÿ

k“j

|zk|
r
¯

1
r
ď }z}2mΨr

logpj ` 1q
1
r1

j

´

n
ÿ

k“j

logpk ` 1q
r
r1

kr

¯
1
r

ď }z}2mΨr

logpj ` 1q
1
r1

j
logpj ` 1q

1
r1
´ 1
r

´

n
ÿ

k“j

logpk ` 1q

kr

¯
1
r
.

We deal with the last sum

n
ÿ

k“j

logpk ` 1q

kr
ď

´

1`
1

j

¯r n
ÿ

k“j

logpk ` 1q

pk ` 1qr
ď 2r

n`1
ÿ

k“j`1

logpkq

kr
ď 2r`2

ż n`1

j

logpxq

xr
dx

ď 2r`2 pr ´ 1q logpjq ` 1

pr ´ 1q2jr´1
ď 2r`2 2r

pr ´ 1q2
logpj ` 1q

jr´1
,

and

|zj |
´

n
ÿ

k“j

|zk|
r
¯

1
r
ď 2r`2 2r

pr ´ 1q2
}z}2mΨr

logpj ` 1q
2
r1

j1` 1
r1

This inequality together with (6.4) give us the desired conclusion.

In view of Lemma 6.2.5, now we need to bound
ř

iPJ pm´2,kq |zi||i|
1
r in a suitable way

(depending on k). To this purpose we switch to the α-notation of multi-indices for conve-
nience, then the sum reads

ÿ

αPΛpm´2,kq

|z|α|rαs|1{r. (6.5)

The strategy is to analyze smaller pieces of the sum: the tetrahedral and an even part
introduced in Section 6.1, and use the bounds obtained for each of these parts to conclude
something about sums which involve general monomials.

Lemma 6.2.6. Fixed 1 ă r ď 2 and M,N P N, for every decreasing z P CN we have

ÿ

αPΛT pM,Nq

|zα||rαs|
1
r ď 2p1` εq

M
r1 }z}MmΨr

N
1

p1`εqr1 ,

for every ε ą 0 and

ÿ

αPΛEpM,Nq

|zα||rαs|
1
r ď }z}M`r ď }id : mΨr Ñ `r}

M}z}MmΨr
.
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6.2. The case 1 ă r ď 2.

Proof. We begin with the first inequality, observing that it is obvious if N “ 1. We may,
then, assume N ě 2. Then, given α P ΛT pM,Nq, note that α! “ 1 and |rαs| is exactly M !.
Then,

ÿ

αPΛT pM,Nq

|zα||rαs|
1
r “

ÿ

αPΛT pM,Nq

|zα||rαs|
1

|rαs|
1
r1

ď

´

N
ÿ

k“1

|zk|
¯M 1

M !
1
r1

ď }z}MmΨr
logpN ` 1q

M
r1

1

M !
1
r1

ď 2}z}MmΨr

´ logpNqM

M !

¯
1
r1

.

A simple calculus argument shows that the function f : r1,8rÑ R given by fpxq “ logpxqM

x1{p1`εq

is bounded by
`

p1`εqM
e

˘M
, then logpNqM ď N1{p1`εq

`

p1`εqM
e

˘M
. On the other hand

M ! ě
`

M
e

˘M
.This gives the conclusion.

For the proof of the second inequality let us recall first that for each α P ΛEpM,Nq there
is a unique β P ΛpM{2, Nq such that α “ 2β and, moreover,

|rαs| “
M !

α1! ¨ ¨ ¨αN !
“

´

pM{2q!

β1! ¨ ¨ ¨βN !

¯2 M !

pM{2q!pM{2q!

N
ź

i“1

βi!βi!

p2βiq!
ď |rβs|2,

where last inequality holds because 2k ď p2kq!
k!2

ď 22k and then

M !

pM{2q!pM{2q!

N
ź

i“1

βi!βi!

p2βiq!
ď 2M

N
ź

i“1

1

2βi
“ 1.

Then (note that, since 2{r ě 1, the `1 norm bounds the `2{r norm)

ÿ

αPΛEpM,Nq

|zα||rαs|
1
r ď

ÿ

βPΛpM{2,Nq

|pz2qβ||rβs|2{r “
ÿ

βPΛpM{2,Nq

´

|pzrqβ||rβs|
¯2{r

ď

´

ÿ

βPΛpM{2,Nq

|pzrqβ||rβs|
¯2{r

“

´

N
ÿ

l“1

|zl|
r
¯M{r

ď }id : mΨr Ñ `r}
M}z}MmΨr

.

Lemma 6.2.7. Given 1 ă r ď 2 there is a constant Kr ě 1 such that for every M,N P N,
and every decreasing z P CN we have

ÿ

αPΛpM,Nq

|zα||rαs|
1
r ď KrpM ` 1qp1` εq

M
r1 2

M
r
`1N

1
p1`εqr1 p}id : mΨr Ñ `r}}z}mΨr

qM ,

for every ε ą 0.
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Chapter 6. Monomial convergence for Hbp`rq

Proof. Choose some decreasing z and use Remark 6.1.1 and Lemma 6.2.6 to get

ÿ

αPΛpM,Nq

|zα||rαs|
1
r “

M
ÿ

k“0

ÿ

αT PΛT pk,Nq

ÿ

αEPΛEpM´k,Nq

|zpαT`αEq||rαT ` αEs|
1
r

ď 2
M
r

M
ÿ

k“0

¨

˝

ÿ

αT PΛT pk,Nq

|zαT ||rαT s|
1
r

˛

‚

¨

˝

ÿ

αEPΛEpM´k,Nq

|zαE ||rαEs|
1
r

˛

‚

ď 2
M
r

M
ÿ

k“0

´

p1` εq
k
r1 }z}kmΨr

N
1

p1`εqr1

¯´

}id : mΨr Ñ `r}
M´k}z}M´kmΨr

¯

ď 2
M
r
`1p1` εqM}id : mΨr Ñ `r}

M}z}MmΨr
N

1
p1`εqr1

M
ÿ

k“0

2kp1´
2
r
q .

For r “ 2 the last sum is exactly M ` 1. If 1 ă r ă 2 the sum is bounded by 22{r

22{r´2
. This

completes the proof.

We are finally in the position to give the proof of Theorem 6.2.3 from which (as we
already saw) the lower inclusion in Theorem 6.2.1 follows.

Proof of Theorem 6.2.3. Fix 1 ă r ď 2 and n,m. Pick then P P P P PpmCnq and z P Cn.
Since }z}mΨr

“ }z˚}mΨr
, we may assume z “ z˚. Applying Lemma 6.2.7 with M “ m´ 2

and N “ k after Lemma 6.2.5 yields

ÿ

jPJ pm,nq
|cjpP qzj| ď 2Arm

1` 1
r e

m
r }z}2mΨr

ˆ

˜

n
ÿ

k“1

logpk ` 1q
2
r1

k1` 1
r1

Krpm´ 1qk
1

p1`εqr1 pp2p1` εqq1{r
1

}id}}z}mΨr
qm´2

¸

}P }Ppm`nr q

ď 2ArKrm
2` 1

r pp1` εq2eq
m
r }id}m}z}mmΨr

˜

n
ÿ

k“1

logpk ` 1q
2
r1

k
1` ε

p1`εqr1

¸

}P }Ppm`nr q .

Since r ą 1 the series
ř8
k“1

logpk`1q
2
r1

k
1` ε
p1`εqr1

is convergent. This completes the proof.

6.3 The case 2 ă r ď 8.

Now we concentrate in the case 2 ă r ď 8. We will study the more general case of
monHbp`r,sq with 2 ă r, s ď 8. We will be able to characterize that set of monomial
convergence in the case s “ 8 for every 2 ă r ď 8 and to give very tight lower and upper
bound for that sets for the remaining cases.

To do so let us define a useful family of Banach sequence spaces that generalize the
Marcinkiewicz spaces. Let Ψ “ pΨpnqq8n“0 be a symbol, i.e., an increasing sequence of
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6.3. The case 2 ă r ď 8.

nonnegative real numbers with Ψp0q “ 0 and Ψpnq ą 0 for every n P N. For 1 ď r, s ď 8
we define Xr,spΨq as

Xr,spΨq :“

"

z P `8 : sup
ně1

1

Ψpnq
}pz˚k q

n
k“1}`nr,s ă 8

*

,

endowed with the norm

}z}Xr,spΨq :“ sup
ně1

}pz˚k q
n
k“1}`nr,s

Ψpnq
.

Whenever r “ s we will simply write XrpΨq for Xr,spΨq.

Remark 6.3.1. For every symbol Ψ, real numbers 1 ď r, s ď 8 and z P Xr,spΨq and using

n
1
r „

´

řn
k“1 k

s
r
´1
¯1{s

we have the following chain of inequalities

|z˚n|n
1
r ď C1|z

˚
n|

˜

n
ÿ

k“1

k
s
r
´1

¸1{s

ď C1}pz
˚
k q
n
k“1}`nr,s ! }z}Xr,spΨqΨpnq,

then |z˚n| ! }z}Xr,spΨq
Ψpnq

n1{r .

It will be useful to consider the mapping ϕ : r2,8s Ñ r1, 2s such that ϕprq “
`

1
2 `

1
r

˘´1

whenever r P r2,8q and ϕp8q “ 2. Observe that for some fixed 2 ď r ď 8 the conjugate

exponent for ϕprq is ϕprq1 “
`

1
2 ´

1
r

˘´1
(1 “ 1

ϕprq `
1

ϕprq1 ).

Theorem 6.3.2. Given 2 ă r ď 8 and 2 ă s ď 8, for any 1
s ă δ ă 1

2 it holds

Xϕprq,ϕpsqpΦ
δq Ă monHbp`r,sq Ă Xϕprq,ϕpsqpΨ2q,

where Ψ2 “ p
a

logpn` 1qq8n“0 (as defined in (6.1)) and Φδ defined on n P N0 as

Φδpnq “

#

Ψ2pnq for s “ 8

logpn` 1q
1
2
´δ for s ă 8.

The upper bound holds for every 2 ď r, s ď 8 (including s “ 2).

The proof of Theorem 6.3.2 requires some work, in particular we will divide it into
the upper and lower bound. We prove the upper bound along Section 6.3.1 and the lower
bound in Section 6.3.2. First let us discuss some of the corollaries and consequences of this
theorem.

Notice that for 2 ă s ă 8 and 1{s ă δ ă 1{2 the symbol Φδ is close to Ψ2. More
precisely, given n P N it holds

Φδpnq “ Ψ2pnq logpn` 1q´δ.

Also for s “ 8 we have Φδ “ Ψ2 not depending on δ, this shows that, assuming Theorem
6.3.2, the following corollary holds.
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Chapter 6. Monomial convergence for Hbp`rq

Corollary 6.3.3. Given 2 ď r ď 8 it holds

monHbp`r,8q “ Xϕprq,2pΨ2q “

$

&

%

z P `8 : sup
ně1

1
a

logpn` 1q

˜

n
ÿ

k“1

k
2
r |z˚k |

2

¸1{2

ă 8

,

.

-

.

In particular Corollary 6.3.3 implies

monHbp`8q “ X2pΨ2q “

$

&

%

z P `8 : sup
ně1

1
a

logpn` 1q

˜

n
ÿ

k“1

|z˚k |
2

¸1{2

ă 8

,

.

-

.

This result looks very similar to Theorem 3.2.3. Even more, we may consider the norm in
z P CN given by

}z}Z :“ max

$

&

%

lim sup
nÑ8

1
a

logpnq

˜

n
ÿ

k“1

pz˚k q
2

¸1{2

, }z}`8

,

.

-

.

It is easy too see
monHbp`8q “ X2pΨ2q “ tz P CN : }z}Z ă 8u,

as sets, and by Theorem 3.2.3 it holds

BZ Ă monH8pB`8q Ă BZ . (6.6)

In a way, with the right norm, we can write then

BmonHbp`8q Ă monH8pB`8q Ă BmonHbp`8q.

Remark 6.3.4. For a fixed symbol Ψ we have X1pΨq “ mΨ. In other word, these new
families of Banach sequence spaces generalize the Marcinkiewicz spaces. In particular it
holds

mΨ2 “ X1pΨ2q. (6.7)

Now we are ready to begin the proof of the upper inclusion in Theorem 6.3.2.

6.3.1 The upper inclusion monHbp`r,sq Ă Xϕprq,ϕpsqpΨ2q.

Here we give a proof for the upper inclusion on Theorem 6.3.2. Our arguments differ
from the classic techniques. For example, in the previous section we have used Bayart’s
polynomials from (2.20). In this case we choose a strategy that is more reminiscent to the
one used in [DF11, BDS19]. In those articles the authors found sharp upper bounds for
the unconditionality constant of Ppm`np q with 2 ď p ă 8 by comparing them with the one
of Ppm`n8q, which they managed to calculate. Here we imitate that heuristic to develop a
tool that allow us to link monHbp`p,sq with monHbp`2q which we already know thanks to
Theorem 6.2.1.

Now we need the following well known Hardy-Littlewood rearrangement inequality (see
for example [HLP52, Section 10.2, Theorem 368]).
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6.3. The case 2 ă r ď 8.

Lemma 6.3.5 (Hardy-Littlewood rearrangement inequality). Let pakqkPN and pbkqkPN two
non-increasing sequences of non-negative real numbers. Then, for every m P N and every
injection σ : NÑ N we have

m
ÿ

k“1

aσpkqbk ď
m
ÿ

k“1

akbk.

The next technical lemma is the first step in the direction of proving the upper inclusion.

Lemma 6.3.6. Given 2 ď r, s ď 8 and ξ P `ϕprq1,ϕpsq1 the linear operator

`r,s
Dξ
ÝÑ `2

pzjqjě1 ÞÝÑ pzjξjqjě1,

is well defined and bounded. Moreover, }Dξ} ď }ξ}`ϕprq1,ϕpsq1 .

Proof. Let us take ξ P `ϕprq1,ϕpsq1 and z P `r,s, then

}Dξpzq}`2 “

˜

ÿ

kě1

|ξkzk|
2

¸1{2

(by Lemma 6.3.5) ď

˜

ÿ

kě1

|ξ˚kz
˚
k |

2

¸1{2

“

˜

ÿ

kě1

|ξ˚kz
˚
k |

2ktk´t

¸1{2

,

where t “ 2p1{r ´ 1{sq. Now, by Hölder inequality (since s ě 2), it holds

˜

ÿ

kě1

|ξ˚kz
˚
k |

2ktk´t

¸1{2

ď

˜

ÿ

kě1

|z˚k |
sk

ts
2

¸1{s˜
ÿ

kě1

|ξ˚k |
2s
s´2k

´ts
s´2

¸
s´2
2s

,

as ts
2 “

s
r ´ 1 and ´ts

s´2 “
ϕpsq1

ϕprq1 ´ 1 the last term in the previous chain of inequalities equals

to }z}`r,s}ξ}`ϕprq1,ϕpsq1 , so

}Dξpzq}`2 ď }z}`r,s}ξ}`ϕprq1,ϕpsq1 . (6.8)

When 2 ď r ă s ď 8 we need to consider the norm in `r,s given by } ¨ }`pr,sq , using (1.2)
we have }z}`r,s ď }z}`pr,sq . Thus by the bound in (6.8), for every 2 ď r, s ď 8 we have
}Dξ} ď }ξ}`ϕprq1,ϕpsq1 .

Now we are able to show the upper inclusion in Theorem 6.3.2.
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Chapter 6. Monomial convergence for Hbp`rq

Proof of the upper inclusion in Theorem 6.3.2. For the case r “ s “ 2, Theorem 6.2.1 and
Remark 6.3.4 with symbol Ψ2 do the job.

In other cases, take z P monHbp`r,sq, we will see that for every ξ P `ϕprq1,ϕpsq1 it holds
Dξz P monHbp`2q Ă X1pΨ2q. Given f P Hbp`2q we define gξ “ f ˝Dξ P Hbp`r,sq, by Remark
3.1.5 it holds cαpgξq “ ξαcαpfq. Now for every f P Hbp`2q we have

ÿ

mě0

ÿ

αPΛpm,nq

|cαpfqpDξzq
α| “

ÿ

mě0

ÿ

αPΛpm,nq

|cαpfqξ
αzα|

“
ÿ

mě0

ÿ

αPΛpm,nq

|cαpgqz
α| ă 8,

so Dξz P monHbp`2q.

This induces the operator

Tz : `ϕprq1,ϕpsq1 Ñ X1pΨ2q (6.9)

ξ ÞÑ ξz, (6.10)

which turns out to be bounded by the Closed graph theorem. Let us show the last assertion
is true. Let pξN qNě1 Ă `ϕppq1,ϕpqq1 be a sequence such that

}ξN ´ ξ}`ϕprq1,ϕpsq1 Ñ 0 (6.11)

}Tzpξ
N q ´ w}X1pΨ2q Ñ 0, (6.12)

as N Ñ8. We need to show w “ Tzpξq “ ξ ¨ z. By equation (6.11) we have

ÿ

kě1

kp
1
s
´ 1
r
qϕpsq1 |pξN ´ ξq˚k|

ϕpsq1 ď AN ,

where AN Ñ 0, then for every fixed k P N it follows

kp
1
s
´ 1
r
qϕpsq1 |pξN ´ ξq˚k|

ϕpsq1 ď AN .

Since |ξNk ´ ξk| ď |pξ
N ´ ξq˚k| Ñ 0 then for any fixed k ξNk Ñ ξk as N Ñ 8. Analogously,

equation (6.12) implies sup
ně1

1
a

logpn` 1q

n
ÿ

k“1

|pξN ¨ z ´wq˚k| ď BN where BN Ñ 0. Now for

some fixed k P N and taking n ě k we have

n
ÿ

k“1

|pξN ¨ z ´ wq˚k| ď BN
a

logpn` 1q,

then, as before ξNk zk Ñ wk. Finally wk “ ξkzk, so w “ Tzpξq as we wanted.
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6.3. The case 2 ă r ď 8.

Now, being Tz bounded, it follows

}Tz} “ sup
ξPB`

ϕprq1,ϕpsq1

}ξz}X1pΨ2q

“ sup
ξPB`

ϕprq1,ϕpsq1

sup
ně1

1
a

logpn` 1q

n
ÿ

k“1

|pξkzkq
˚|

“ sup
ně1

1
a

logpn` 1q
sup

ξPB`
ϕprq1,ϕpsq1

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

ξkz
˚
k

ˇ

ˇ

ˇ

ˇ

ˇ

„ sup
ně1

1
a

logpn` 1q
}pz˚k q

n
k“1}`ϕprq,ϕpsq

“ }z}Xϕprq,ϕpsqpΨ2q,

since, using 1 ă ϕprq by Theorem 1.1.4 the space p`nϕprq,ϕprqq
1 and `nϕprq1,ϕpsq1 are isomorphic

for every n P N (and the norm of the isomorphism does not depend on n). Then, as
}Tz} „ }z}Xϕppq,ϕpqqpΨ2q is a finite number z P Xϕppq,ϕpqqpΨ2q.

6.3.2 The lower inclusion Xϕprq,ϕpsqpΦ
δq Ă monHbp`r,sq.

We face now the proof of the lower inclusion in Theorem 6.3.2. The main tool is the
following result, whose proof is performed all along this section.

Theorem 6.3.7. Fix 2 ă r ď 8 and 2 ă s ď 8. Let 1{s ă δ ă 1{2 and define Φδ as in
Theorem 6.3.2. For every ε ą 0 and m,n P N, every P P PpmCnq and every z P Cn, we
have

ÿ

jPJ pm,nq
|cjpP qz

˚
j | ď Dpεqem3{2p1` εqpm´1q{2Am´1}P }Ppm`nr,8q}z}

m
Xϕprq,ϕpsqpΦδq

,

where A “ 2C´1
r,s,δ

˜

8
ÿ

l“1

ˆ

logpl ` 1q

l

˙2
¸1{4

and Cr,s,δ, Dpεq ą 0 are constants not depending

on m nor n.

Before starting the proof of this result, let us see how, using it, we can show the lower
inclusion.

Proof of the lower inclusion in Theorem 6.3.2. Choose z P Xϕprq,ϕpsqpΦ
δq and let us see

that z P monHbp`r,sq. By Corollary 3.3.6 we may assume without loss of generality z “ z˚.
Given f P Hbp`r,sq (recall that we denote Pmpfq for the m-homogeneous part of its Taylor
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expansion) and Theorem 6.3.7 (with ε “ 1) gives

ÿ

αPNpNq0

|cαpfqz
α| “ sup

nPN

8
ÿ

m“0

ÿ

jPJ pm,nq
|cjpfqzj|

ď sup
nPN

8
ÿ

m“0

Dpεqem3{2p
?

2Aqm´1}z}mXϕprq,ϕpsqpΦδq sup
uPB`nr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPJ pm,nq
cjpfquj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ Dpεqe
8
ÿ

m“0

m3{2p
?

2Aqm´1}z}mXϕprq,ϕpsqpΦδq}Pmpfq}Ppm`
n
r,8q

.

Let us see that this sum is finite. Take

R ą S :“ sup
mě1

´

m3{2p
?

2Aqm´1}z}mXϕprq,ϕpsqpΦδq

¯1{m
,

then by the homogeneity of Pmpfq it follows

8
ÿ

m“0

m3{2p
?

2Aqm´1}z}mXϕprq,ϕpsqpΦδq}Pmpfq}Ppm`rq

“

8
ÿ

m“0

m3{2p
?

2Aqm´1}z}m
Xϕprq,ϕpsqpΦδq

Rm
sup

wPR¨B`r

|Pmpfqpwq|

ď

8
ÿ

m“0

ˆ

S

R

˙m

sup
wPR¨B`r

|fpwq| ă 8,

where the last step is due to Cauchy’s inequality. This completes the proof.

In the previous section we used Theorem 2.1.7 to achieve the lower bounds, here we
will replace it with Theorem 2.1.9. Thanks to Remark 3.1.5 we will manage to use it to
compare a mixed coefficient norm of a given polynomial with its uniform norm on `r,s. If
we had a new mixed inequality in the fashion of Theorem 2.1.7 and Theorem 2.1.9 that fit
our problem better, perhaps we could close the gap between the upper and lower bound in
the Theorem 6.3.2.

Lemma 6.3.8. Fix 2 ď r ď 8 and 2 ă s ď 8. Let 1{s ă δ ă 1{2 and define Φδ as in
Theorem 6.3.2. For every m,n P N, every P P PpmCnq and every decreasing z P Cn we
have

ÿ

jPJ pm,nq
|cjpP qzj| ď em2m´1}P }Ppm`nr,8q}z}Xϕprq,ϕpsqpΦδq sup

k“1,...,n

Φδpkq

k1{ϕprq|wk|

¨

˝

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

zj
wj

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

,

where w P B`nr,s.
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6.3. The case 2 ă r ď 8.

Proof. Consider P P PpmCnq and z P Cn decreasing. Using first Hölder’s inequality,
Theorem 2.1.9 and Remark 3.1.5 with R “ B`nr,8 we have

ÿ

jPJ pm,nq
|cjpP qzj| “

n
ÿ

k“1

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

cpj,kqpP qwjwk
zj
wj

zk
wk

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

¨

˝

ÿ

jPJ pm´1,kq

|cpj,kqpPwq|
2

˛

‚

1
2
¨

˝

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

zj
wj

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

ď

n
ÿ

k“1

¨

˝

ÿ

jPJ pm´1,kq

|cpj,kqpPwq|
2

˛

‚

1
2

sup
k“1,...,n

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

¨

˝

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

zj
wj

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

.

Finally, by Remark 6.3.1 we have

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

ď }z}Xϕprq,ϕpsqpΦδq
Φδpkq

k1{ϕprq ¨ wk
,

and replacing this bound in the previous chain of inequalities the proof is finished.

Lemma 6.3.8 holds true for every w P B`nr,s . It will be convenient to pick w depending
on r, s and 1{s ă δ ă 1{2 as follows

w “ wδ “

$

’

&

’

%

´

1
k1{r

¯N

k“1
if s “ 8

Cr,s,δ

´

1
k1{r logpk`1qδ

¯N

k“1
if s ă 8,

(6.13)

where Cr,s,δ ą 0 is such that }w}`nr,s ď 1. We may think that Cr,s,δ “ 1 when s “ 8.

Now we will need the tetrahedral and even multi-indices used in the factorization de-
composition in Section 6.1.

Lemma 6.3.9. Fix 2 ď r ď 8, 2 ă s ď 8 and 1{s ă δ ă 1{2. For every pair M,N P N,
and every decreasing z P CN we have

ÿ

αPΛT pM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

ď C´2M
r,s,δ p1` εq

M}z}2MXϕprq,ϕpsqpΦδqpN ` 1q
1

1`ε ,

for every ε ą 0 and

ÿ

αPΛEpM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

ď C´2M
r,s,δ }z}

2M
Xϕprq,ϕpsqpΦδq

˜

8
ÿ

k“1

ˆ

logpkq

k

˙2
¸M{2

,

where w P B`Nr,s and Cr,s,δ as defined in (6.13), .
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Chapter 6. Monomial convergence for Hbp`rq

Proof. We begin with the first inequality, observing that it is obvious if N “ 1. We may,
then, assume N ě 2. Then, given α P ΛT pM,Nq, note that α! “ 1 and |rαs| is exactly M !.
Then, for s “ 8 we have

ÿ

αPΛT pM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

“
1

M !

ÿ

αPΛT pM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

M ! ď
1

M !

˜

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

2
¸M

“
1

M !

´

}z}2`ϕprq,2

¯M
ď

1

M !
}z}2MXϕprq,2pΨ2q

logpN ` 1qM .

(6.14)

On the other hand for 2 ă s ă 8 let us take 1{s ă δ ă 1{2. First by Remark 6.3.1 we
have

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

2

“ C´2
r,s,δ |zk|

ϕpsq
|zk|

2´ϕpsq k2{r logpk ` 1q2δ

ď C´2
r,s,δ|zk|

ϕpsq}z}
2´ϕpsq

Xϕprq,ϕpsqpΦδq
Φδpkq2´ϕpsq k

ϕpsq
ϕprq

´1
logpk ` 1q2δ.

(6.15)

Then, proceeding as before, and using the expression in (6.15) it follows

ÿ

αPΛT pM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

ď
1

M !

˜

N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

2
¸M

ď
1

M !

˜

C´2
r,s,δ}z}

2´ϕpsq

Xϕprq,ϕpsqpΦδq
ΦδpNq2´ϕpsq logpN ` 1q2δ

N
ÿ

k“1

k
ϕpsq
ϕprq

´1
|zk|

ϕpsq

¸M

“
1

M !
C´2M
r,s,δ

´

}z}
2´ϕpsq

Xϕprq,ϕpsqpΦδq
ΦδpNq2´ϕpsq logpN ` 1q2δ}pz˚k q

N
k“1}

ϕpsq
`ϕprq,ϕpsq

¯M

“
1

M !
C´2M
r,s,δ }z}

2M
Xϕprq,ϕpsqpΦδq

´

ΦδpNq2 logpN ` 1q2δ
¯M

.

(6.16)

Since ΦδpNq2 logpN ` 1q2δ “ logpN ` 1q, and by the chain of inequalities in (6.16) we have

ÿ

αPΛT pM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

ď
C´2M
r,s,δ

M !
}z}2MXϕprq,ϕpsqpΦδq logpN ` 1qM ,

as for s “ 8.

A simple calculus argument shows that the function f : r1,8rÑ R given by fpxq “
logpxqM

x1{p1`εq is bounded by
`

p1`εqM
e

˘M
, then logpNqM ď N1{p1`εq

`

p1`εqM
e

˘M
. On the other

hand M ! ě
`

M
e

˘M
. This gives the conclusion.

For the proof of the second inequality let us recall first that for each α P ΛEpM,Nq
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6.3. The case 2 ă r ď 8.

there is a unique β P ΛpM{2, Nq such that α “ 2β, then

ÿ

αPΛEpM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

βPΛpM{2,Nq

ˇ

ˇ

ˇ

ˇ

z2β

w2β

ˇ

ˇ

ˇ

ˇ

2

“
ÿ

βPΛpM{2,Nq

ˇ

ˇ

ˇ

ˇ

zβ

wβ

ˇ

ˇ

ˇ

ˇ

4

ď

˜

ÿ

k“1

ˇ

ˇ

ˇ

ˇ

zk
wk

ˇ

ˇ

ˇ

ˇ

4
¸M{2

ď C´2M
r,s,δ }z}

2M
Xϕprq,ϕpsqpΦδq

˜

8
ÿ

k“1

ˆ

logpk ` 1q

k

˙2
¸M{2

,

where we used Remark 6.3.1 and that it holds Φδpkq
wk

ď C´1
r,s,δ logpk ` 1q1{2k1{r for any

2 ă s ď 8 and every k P N.

Lemma 6.3.10. Fix 2 ď r ď 8, 2 ă s ď 8 and 2 ă δ ă s. For every pair M,N P N, and
every decreasing z P CN we have

ÿ

αPΛpM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

ď pM ` 1qp1` εqMAM}z}2MXϕprq,ϕpsqpΦδqpN ` 1q
1

1`ε ,

for every ε ą 0 and A “ C´2
r,s,δ

˜

8
ÿ

l“1

ˆ

logpl ` 1q

l

˙2
¸1{2

.

Proof. Choose some decreasing z and use Lemma 6.3.9 to get

ÿ

αPΛpM,Nq

ˇ

ˇ

ˇ

ˇ

zα

wα

ˇ

ˇ

ˇ

ˇ

2

ď

M
ÿ

k“0

ÿ

αT PΛT pk,Nq

ÿ

αEPΛEpM´k,Nq

ˇ

ˇ

ˇ

ˇ

ˇ

zpαT`αEq

wpαT`αEq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

M
ÿ

k“0

¨

˝

ÿ

αT PΛT pk,Nq

ˇ

ˇ

ˇ

ˇ

zαT

wαT

ˇ

ˇ

ˇ

ˇ

2
˛

‚

¨

˝

ÿ

αEPΛEpM´k,Nq

ˇ

ˇ

ˇ

ˇ

zαE

wαE

ˇ

ˇ

ˇ

ˇ

2
˛

‚

ď

M
ÿ

k“0

´

C´2k
r,s,δp1` εq

k}z}2kXϕprq,ϕpsqpΦδqpN ` 1q
1

1`ε

¯´

}z}
2pM´kq

Xϕprq,ϕpsqpΦδq
AM´k

¯

“ }z}2MXϕprq,ϕpsqpΦδqpN ` 1q
1

1`εAM
M
ÿ

k“0

p1` εqk

ď pM ` 1qp1` εqMAM}z}2MXϕprq,ϕpsqpΦδqpN ` 1q
1

1`ε .

We are finally in the position to give the proof of Theorem 6.2.3 from which (as we
already saw) the lower inclusion in Theorem 6.2.1 follows.

Proof of Theorem 6.3.7. Fix 2 ď r ď 8 and 2 ă s ď 8 and let 1{s ă δ ă 1{2 and ε ą 0.
For n,m P N take P P PpmCnq and z P Cn. Since }z}mΨr

“ }z˚}mΨr
, we may assume
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Chapter 6. Monomial convergence for Hbp`rq

z “ z˚. Using Lemma 6.3.10 with M “ m´ 1, N “ k and w as in (6.13) we have

sup
k“1,...,n

Φδpkq

k1{ϕprq ¨ wk

¨

˝

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

zj
wj

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

ď sup
k“1,...,n

logpk ` 1q
1
2
´δ logpk ` 1qδk1{r

k1{ϕprq

´

mp1` εqm´1Am´1}z}
2pm´1q

Xϕprq,ϕpsqpΦδq
k

1
1`ε

¯1{2

ď
a

mp1` εqm´1Am´1}z}
pm´1q

Xϕprq,ϕpsqpΦδq
sup

k“1,...,n

logpk ` 1q1{2k
1

2p1`εq

k1{2
.

(6.17)

Since the sequence

ˆ

logpk`1q1{2k
1

2p1`εq

k1{2

˙

kě1

is eventually decreasing it follows

sup
k“1,...,n

logpk ` 1q1{2k
1

2p1`εq

k1{2
“ Dpεq,

and replacing this in the chain of inequalities in (6.17) we obtain

sup
k“1,...,n

Φδpkq

k1{ϕprq ¨ wk

¨

˝

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

zj
wj

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

ď
a

mp1` εqm´1Am´1Dpεq}z}
pm´1q

Xϕprq,ϕpsqpΦδq

(6.18)
Lemma 6.3.8 plus the bound in (6.18) yield

ÿ

jPJ pm,nq
|cjpP qzj| ď em2m´1}P }Ppm`nr,8q}z}Xϕprq,2 sup

k“1,...,n

¨

˝

logpkq

k

ÿ

jPJ pm´1,kq

ˇ

ˇ

ˇ

ˇ

zj
wj

ˇ

ˇ

ˇ

ˇ

2
˛

‚

1
2

ď em3{22m´1Cpεq
a

mp1` εqm´1Am´1}P }Ppm`nr,8q}z}
m
Xϕprq,2

.

where A is defined as in Lemma 6.3.10.

It is remarkable that in those Banach sequence spaces X for which we were able to char-
acterize the set of monomial convergence for the family HbpXq it results that monHbpXq
is itself a Banach sequence space. This brings the new questions.

Question 6.3.11. Is the set of monomial convergence of HbpXq a Banach sequence space
for any given Banach sequence space X?

Or the less ambitious one.

Question 6.3.12. Is it always a Banach space or at least a vector space?

Those questions seem very interesting and they trace a research path around the struc-
ture of these sets.
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Chapter 7

Monomial convergence for H8pB`rq

We will use the results in Chapter 6 to shed new light on the sets of monomial convergence
of H8pB`r,sq. Previously our methods allowed us to characterize the resulting Banach
sequence space monHbp`rq whenever 1 ă r ď 2. Here we transpose those results to give
new descriptions of monH8pB`rq when 1 ă r ď 2.

7.1 Changing finite coordinates

When dealing with monH8pB`8q it is very useful the fact that, if a sequence belongs to
the set of monomial convergence and we modify finitely many coordinates, the resulting
sequence remains in the set of monomial convergence.

Lemma 7.1.1. [DGMPG08, Lemma 2] If z P H8pB`8q and u P B`8 satisfy that |un| ď |zn|
for all but finitely many n P N, then u P monH8pB`8q.

It is unknown whether or not an analogous result holds for `r (see the comments
regarding this problem in [Sch15, Chapter 10]). We overcome this with the following
proposition, which is a weaker version of this, but enough for our purposes. We are inspired
by [DGMPG08, Lemma 2] and [DGMSP19, Proposition 10.14].

Proposition 7.1.2. Let 1 ă r ă 8 and u, z P B`r be such that |un| ď |zn| for
1 ď n ď N and |un| “ |zn| for n ą N . Suppose that there exists ρ ą

řN
n“1 |zn|

r so
that u P monH8pp1´ ρq

1{rB`rq. Then z P monH8pB`rq.

Proof. Let a1, . . . , aN be positive real numbers such that |zi| ă ai for every 1 ď i ď N and

a :“
N
ÿ

n“1

arn ă ρ.

Given f P H8pB`rq and k1, . . . , kN P N, we define (following the proof of [DGMPG08,
Lemma 2])

fk1,...,kN pνq :“
1

p2πiqN

ż

|w1|“a1

¨ ¨ ¨

ż

|wN |“aN

fpw1, . . . , wN , νN`1, νN`2, . . .q

wk1`1
1 ¨ ¨ ¨wkN`1

N

dw1 ¨ ¨ ¨ dwN .
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Chapter 7. Monomial convergence for H8pB`r q

Note that fk1,...,kN is well defined on the contracted ball p1´ aq1{rB`r and, in fact, belongs
to H8pp1´ aq

1{rB`rq (because f P H8pB`rq) and

}fk1,...,kN }p1´aq1{r¨B`r
ď

}f}B`r

ak1
1 ¨ ¨ ¨ a

kN
N

. (7.1)

Our next step is to understand the coefficients cαpfk1,...,kN q in relation to those of f . For
each multi-index α “ pα1, . . . , αn, 0, . . .q with αn ‰ 0, an application of the Cauchy integral
formula yields

cαpfk1,...,knq “

#

cpk1,...,kN ,αN`1,...,αnqpfq if α1 “ ¨ ¨ ¨ “ αN “ 0,

0 otherwise.
(7.2)

We have now everything we need to proceed. Note that, since a ă ρ, we have u P
monH8pp1 ´ ρq1{rB`rq Ă monH8pp1 ´ aq1{rB`rq. With Proposition 3.1.4 and (7.1) we
get

ÿ

βPNpNq0

|cβpfk1,...,kN q||u
β1

N`1 ¨ ¨ ¨u
β2

N`2 ¨ ¨ ¨ | ď Cu}fk1,...,kN }p1´aq1{rB`r
ď Cu

}f}B`r

ak1
1 ¨ ¨ ¨ a

kN
N

. (7.3)

Now using (7.2) and (7.3) (recall that |un| “ |zn| for n ě N ` 1) we have

ÿ

αPNpNq0

|cαpfq||z
α| “

ÿ

pk1,...kN qPNN0

|zk1
1 ¨ ¨ ¨ zkNN |

ÿ

βPNpNq0

|cpk1,...,kN ,βqpfq||u
β1

N`1 ¨ ¨ ¨u
β2

N`2 ¨ ¨ ¨ |

“
ÿ

pk1,...kN qPNN0

|zk1
1 ¨ ¨ ¨ zkNN |

ÿ

βPNpNq0

|cβpfk1,...,kN q||u
β1

N`1 ¨ ¨ ¨u
β2

N`2 ¨ ¨ ¨ |

ď
ÿ

pk1,...kN qPNN0

|zk1
1 ¨ ¨ ¨ zkNN |Cu

}f}B`r

ak1
1 ¨ ¨ ¨ a

kN
N

“ Cu}f}B`r

N
ź

n“1

ÿ

kně0

ˆ

|zn|

an

˙kn

ă 8,

as we wanted.

Let us make the last observation before we proceed with the following sections. Given
a Banach sequence space X, for every f P H8ptBXq and t ą 0 the function ft given by
ftpxq “ fptxq for x P BX belongs to H8pBXq and cαpftq “ t|α|cαpfq for every α. Then, if
z P monH8pBXq we have

ÿ

αPNpNq0

|cαpfqptzq
α| “

ÿ

αPNpNq0

|cαpfqt
|α|zα| “

ÿ

αPNpNq0

|cαpftqz
α| ă 8.

This implies t monH8pBXq Ă monH8ptBXq for every Banach sequence space X and every
t ą 0.
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7.2. The case 1 ď r ď 2

Noting that tBX is the open unit ball of the Banach sequence space pX, t}¨}Xq, the previous
inclusion yields

t´1monH8ptBXq Ă monH8pt
´1tBXq “ monH8pBXq.

This altogether shows
monH8ptBXq “ tmonH8pBXq (7.4)

for every Banach sequence space X and every t ą 0.

7.2 The case 1 ď r ď 2

Now we will focus on monH8pB`rq for 1 ă r ď 2. The main result of the section is the
following theorem that, in some sense that will become clear later (see Remark ??), char-
acterizes the geometry of the set of monomial convergence for this families of holomorphic
functions.

Theorem 7.2.1. Let 1 ă r ď 2 then,

!

z P B`r : 2e}id : mΨr Ñ `r}
r

ˆ

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r

˙r

` }z}r`r ă 1
)

Ă

monH8pB`rq Ă
!

z P B`r : lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r
ď 1

)

.

The upper inclusion follows using probabilistic techniques, as in the case of monHbp`rq.
The lower inclusion, on the other hand, relies on Theorem 6.2.3 and requires some prelim-
inary work that starts with the following lema.

Lemma 7.2.2. Let 1 ă r ď 2 then, 1
}id:mΨrÑ`r}p2eq

1{rBmΨr
Ă monH8pB`rq.

Proof. In order to keep things readable we write K “ }id : mΨr Ñ `r}p2eq
1{r. We first

show that if z P 1
KBmΨr

is non-decreasing, then z P monH8pB`rq. The general result
follows from the fact that BmΨr

and monH8pB`rq are both symmetric (Corollary 3.3.6).

We choose now f P H8pB`rq and fix ε ą 0 so that p1`εq1{r}z}mΨr
K ă 1. By Theorem 6.2.3

we can find Crpεq ą 0 so that

ÿ

αPNpNq0

|cαpfqz
α| “ sup

nPN

8
ÿ

m“0

ÿ

jPJ pm,nq
|cjpfqzj|

ď sup
nPN

8
ÿ

m“0

Crpεqm
2` 1

r p1` εq
m
r Km}z}mmΨr

sup
uPB`nr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPJ pm,nq
cjpfquj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

m“0

Crpεq
´

m
1
m
p2` 1

r
qp1` εq

1
rK}z}mΨr

¯m
}Pmpfq}Ppm`rq

ď }f}B`rCrpεq
8
ÿ

m“0

´

m
1
m
p2` 1

r
qp1` εq

1
rK}z}mΨr

¯m
.
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Chapter 7. Monomial convergence for H8pB`r q

The choice of ε and fact that m
1
m
p2` 1

r
q Ñ 1 as m Ñ 8 immediately gives that the series

converges and completes the proof.

We are now in conditions to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Let us start with the upper inclusion

monH8pB`rq Ă
!

z P B`r : lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r
ď 1

)

.

Fix z P monH8pB`rq. Arguing as in the proof of the upper inclusion of Theorem 6.2.1,
proceeding as in (6.2), replacing the role of Lemma 6.2.2 by Proposition 3.1.4, and as in
(6.3) we get

n
ÿ

j“1

|z˚j | ď C
1
m
z˚,r

”

logpmq
1
m p2πmq

1
2m e

1
12m2

m

e
n

1
m

ı1´ 1
r
.

where Cz˚,r is a positive constant that depends only on z˚ and r. Choosing m “ tlogpn`1qu
we get

lim sup
nÑ8

1

logpn` 1q1´
1
r

n
ÿ

k“1

|z˚n| ď 1,

which gives our claim.
We now face the proof of the lower inclusion

!

z P CN : 2e}id : mΨr Ñ `r}
r

ˆ

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r

˙r

` }z}r`r ă 1
)

Ă monH8pB`rq.

In order to keep the notation as simple as possible, let K “ 2e}id : mΨr Ñ `r}
r. Take

z P CN such that

K

ˆ

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r

˙r

` }z}r`r ă 1,

and note that this implies z P B`r . Denote L :“ lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r
, choose ε ą 0 so

that
K
`

p1` εqL
˘r
` }z}r`r ă 1, (7.5)

and N P N for which

sup
něN

řn
k“1 z

˚
k

logpn` 1q1´1{r
ă p1` εqL.

Let us observe that

z˚N ă
logpN ` 1q1´1{r

N
p1` εqL, (7.6)

(this follows essentially as in Remark 6.2.4) and define u “ pz˚N , . . . , z
˚
N

looooomooooon

N

, z˚N`1, z
˚
N`2, . . .q.

First, for every n ă N we have, using (7.6),
řn
k“1 u

˚
k

logpn` 1q1´1{r
ă p1` εqL.

108



7.2. The case 1 ď r ď 2

On the other hand, for n ě N ,

řn
k“1 u

˚
k

logpn` 1q1´1{r
ď

řn
k“1 z

˚
k

logpn` 1q1´1{r
ă p1` εqL.

This altogether gives }u}mΨr
ă p1` εqL. We choose ρ ą

řN
k“1 |zk|

r such

}id : mΨr Ñ `r}
rp2eqpLp1` εqqr ` ρ ă 1,

and, using (7.5) we get

}u}mΨr
ă p1` εqL ă

p1´ ρq1{r

}id : mΨr Ñ `r}p2eq1{r
.

Lemma 7.2.2 and equation (7.4) imply u P monH8pp1 ´ ρq1{rB`rq and, then Proposi-
tion 7.1.2 gives z˚ P monH8pB`rq. Finally, Corollary 3.3.6 yields z P monH8pB`rq and
completes the proof.

Remark 7.2.3. Theorem 7.2.1 implies other known results which try to characterize the
set of monomial convergence of H8pB`rq. Note first that, if z P `1, then

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r
“ 0.

Thus

B`r X `1 Ă
!

z P CN : 2e}id : mΨr Ñ `r}
r

ˆ

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r

˙r

` }z}r`r ă 1
)

.

On the other hand, if z P B`r is such that

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r
ď 1

then there is a constant c ą 0 so that

z˚n ď c
logpn` 1q1´1{r

n
.

From this we easily get that z P `1`ε for every ε ą 0, and we recover a result of [DMP09]
(see (3.8)).

The following corollary extends the result in (3.10) enlarging the range of values for
θ from p1{2,8q to p0,8q. This solves an explicit question given in [BDS19, Remark 5.9].
Even more, the result enables us to take θ “ 0 multiplying the sequence by a constant.
This means that, in some sense, Theorem 7.2.1 actually gives a better understanding of
monH8pB`rq for 1 ă r ď 2.
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Corollary 7.2.4. Let 1 ă r ď 2, then, for every θ ą 0, it holds
ˆ

1

n1{r1 logpn` 2qθ

˙

ně1

¨B`r Ă monH8pB`rq. (7.7)

Moreover, denoting K “ 1
p2e}id:mΨrÑ`r}`1q1{r

, we have

ˆ

1

Kn1{r1

˙

ně1

¨B`r Ă monH8pB`rq. (7.8)

Proof. Let us begin by proving (7.7). Fix θ ą 0 and choose z P
´

1
n1{r1 logpn`2qθ

¯

ně1
B`r .

We can find w P B`r so that zn “
wn

n1{r1 logpn`1qθ
for every n P N. Since z P c0, there is an

injective σ : N Ñ N such that z˚n “ |zσpnq| “
|wσpnq|

σpnq1{r
1
logpσpnq`2qθ

. Using Hölder’s inequality

we get

1

logpn` 1q1{r1

n
ÿ

l“1

z˚l “
1

logpn` 1q1{r1

n
ÿ

l“1

|wσplq|

σplq1{r1 logpσplq ` 2qθ

ď
1

logpn` 1q1{r1

˜

n
ÿ

l“1

|wσplq|
r

¸1{r˜ n
ÿ

l“1

1

σplq logpσplq ` 2qr1θ

¸1{r1

ď
1

logpn` 1q1{r1

˜

n
ÿ

l“1

1

σplq logpσplq ` 2qr1θ

¸1{r1

ď
1

logpn` 1q1{r1

˜

n
ÿ

l“1

1

l logpl ` 2qr1θ

¸1{r1

,

where the last inequality holds because x ÞÑ 1
x logpx`2qr1θ

defines a decreasing function for

x ą 1. The last term, 1
logpn`1q1{r

1

´

řn
l“1

1
l logpl`2qr1θ

¯1{r1

, goes to 0 as nÑ8, and therefore

lim sup
nÑ8

1

logpn` 1q1{r1

n
ÿ

l“1

z˚l “ 0.

Indeed, suppose that θ ă 1
r1 (which me may always asume since 1

l logpl`2qr1θ
is decreasing

on θ). Thus, there is some Cr1,θ ą 0 such that

˜

n
ÿ

l“1

1

l logpl ` 2qr1θ

¸1{r1

ď Cr1,θ

ˆ
ż n

l“2

1

x logpxqr1θ
dx

˙1{r1

“ Cr1,θ

˜

ż logpnq

l“logp2q

1

yr1θ
dy

¸1{r1

ď Cr1,θ logpnq´θ`
1
r1 ,
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Then, 1
logpn`1q1{r

1

´

řn
l“1

1
l logpl`2qr1θ

¯1{r1

ď Cr1,θ logpnq´θ Ñ 0.

On the other hand, z P B`r (note that |zn| ď |wn| for every n and w P B`r), then

2e}id : mΨr Ñ `r}
r

ˆ

lim sup
nÑ8

řn
k“1 z

˚
l

logpn` 1q1´1{r

˙r

` }z}r`r “ }z}
r
`r ă 1,

and, by Theorem 7.2.1, z P monH8pB`rq.

To prove (7.8), take z “
´

1
Kn1{r1

wn

¯

ně1
with w P B`r , and note that }z}r`r ă

1
Kr . Since

z P c0, there is an injective σ : N Ñ N such that z˚n “ |zσpnq| “
|wσpnq|

Kσpnq1{r
1 . Using Hölder’s

inequality we get

K

logpn` 1q1{r1

n
ÿ

l“1

z˚l “
1

logpn` 1q1{r1

n
ÿ

l“1

|wσplq|

σplq1{r1

ď
1

logpn` 1q1{r1

˜

n
ÿ

l“1

|wσplq|
r

¸1{r˜ n
ÿ

l“1

1

σplq

¸1{r1

ď
1

logpn` 1q1{r1

˜

n
ÿ

l“1

1

σplq

¸1{r1

ď
1

logpn` 1q1{r1

˜

n
ÿ

l“1

1

l

¸1{r1

ď 1.

Since K “ p2e}id : mΨr Ñ `r}
r ` 1q1{r, we have

2e}id : mΨr Ñ `r}
r

ˆ

lim sup
nÑ8

řn
k“1 z

˚
l

logpn` 1q1´1{r

˙r

` }z}r`r ă p2e}id : mΨr Ñ `r}
r ` 1q

1

Kr
“ 1.

Now Theorem 7.2.1 gives the conclusion.

Let us analyze Theorem 7.2.1 in a qualitative way.
Observe that, given 1 ă r ď 2, we may define the following two norms

}z}Ar “ max

"

}z}`r ,

řn
k“1 z

˚
k

logpn` 1q1´1{r

*

, (7.9)

}z}Ãr “ Kr

ˆ

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r

˙r

` }z}r`r (7.10)

for every z P mΨr where Kr “ 2e}id : mΨr Ñ `r}
r. Let us call Ar and Ãr to the spaces

defined through these norms respectively. Recall the well known bound

maxt|a|, |b|u ď p|a|r ` |b|rq1{r ď 2
1
r maxt|a|, |b|u, (7.11)

which holds for every 1 ď r ă 8 and all a, b P C. Thanks to (7.11), the norms defined in
(7.9) and (7.10) are equivalent. Thus, for some constant Cr ą 0, we have

Cr ¨BAr Ă BÃr . (7.12)
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Note that

BAr “
!

z P B`r : lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r
ă 1

)

,

BÃr “
!

z P B`r : Kr

ˆ

lim sup
nÑ8

řn
k“1 z

˚
k

logpn` 1q1´1{r

˙r

` }z}r`r ă 1
)

,

and thanks to Theorem 7.2.1 and the set inclusion in (7.12) it follows that

Cr ¨BAr Ă monH8pB`rq Ă BAr . (7.13)

Remark 7.2.5. If we hope a result as in equation (6.6), i.e.,

Br Ă monH8pB`rq Ă Br,

with Br the ball of some normed space then, the bounds in (7.13) imply that, its norm
needs to be equivalent to the norm in Ar. In this sense Theorem 7.2.1 characterizes the
geometry of monH8pB`rq.

To end this chapter we will apply some of the results in this section to give a new way
to tackle a problem we have already addressed in Chapter 5.

7.3 Mixed Bohr radius revisited

In this last section we present an application of the results given in the chapter to the
mixed Bohr radius. As a consequence of Lemma 6.2.5 we can give an alternative proof of
the lower bounds for KpB`np , B`nq q for the case 1 ď p ď 2 (and every 1 ď q ď 8). We will
show now a fact that we have already proved in Section 5.5.3, this is for 1 ă q ă p ď 2

logpnq1´1{p

n1´1{q
! KpB`np , B`nq q.

By Theorem 4.2.2 and Lemma 7.2.2, there is a constant C :“ Cppq ą 0 such that for
every polynomial P in n complex variables we have

ÿ

jPJ pm,nq
|cjpP qzj| ď Cm}z}mpmΨp qn

}P }Ppm`np q, (7.14)

where pmΨpqn is defined as the quotient space induced by the mapping

πn : mΨp Ñ Cn

x ÞÑ px1, . . . , xnq.

Note that there is a constant D “ Dpp, qq ą 0 such that }z}pmΨp qn
ď D n

1´ 1
q

logpnq
1´ 1

p
}z}`nq .

Therefore, by (7.14) we have

ÿ

jPJ pm,nq
|cjpP qzj| ď pCDq

m

˜

n
1´ 1

q

logpnq
1´ 1

p

¸m

}z}m`nq }P }Ppm`np q,
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This implies that χp,qpPpmCnqq1{m ! n
1´ 1

q

logpnq
1´ 1

p
. It should be noted that here it is important

to have a control of the growth of the pp, qq-mixed unconditional constant also in terms
of m (the homogeneity degree), in fact we need the hypercontractivity given in (7.14).The
result now follows using Lemma 5.3.2, i.e.,

KpB`np , B`nq q „
1

supmě1 χp,qpPpmCnqq1{m
.
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Chapter 8

Monomial convergence for Ppm`rq

In this final chapter we revisit the set of monomial convergence of homogeneous polynomi-
als. For some fixed 1 ă r ď 2 and m ě 2 we have proved in Section 3.4 that

`q Ă monPpm`rq,

for q “ pmr1q1 answering an open question. Our aim now is to tighten this lower bound.
We find a lower inclusion that gets narrower when m gets bigger.

Theorem 8.0.1. Fix 1 ă r ď 2 and, for each m ě 2, define q :“ pmr1q1. Then `q Ă
monPp2`rq; `q,2 Ă monPp3`rq; `q, 3`

?
5

2

Ă monPp4`rq and

`q, m
logpmq

Ă monPpm`rq.

for m ě 5.

Our starting point will be the results proved in Section 3.4. In this way, Corollary 3.4.2
proves the case m “ 2 in Theorem 8.0.1. We face now the problem of getting the result
for other m’s. The general philosophy is always to try to get a bound as that in Theorem
3.4.1. There, in the right-hand-side we have some constants that depend on r and m (but
not on n, the number of variables), the norm of the polynomial and the norm of z in some
space X. This then implies X Ă monPpm`rq. Henceforth the idea is to take the sum as
depending on m different variables; that is, for each polynomial P we consider

ÿ

1ďj1ď¨¨¨ďjmďn

|cjpP qz
p1q
j1
. . . z

pmq
jm
| (8.1)

with zp1q, . . . , zpmq P Cn and then try to get an estimate that involves the norms of the
zpjq in (possibly) different spaces. This then gives that the smallest of these spaces is
contained in the set of monomial convergence (see Remark 8.2.2). We do this (giving
the proof of Theorem 8.0.1) in two stages (that we present in the following two sections).
First we give an estimate for the sum that involves both `q,1 and `q,8 norms (the precise
statement is given in Proposition 8.1.1). Then we interpret this inequality as operators
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from `q,8ˆ¨ ¨ ¨ˆ`q,8ˆ`q,1ˆ`q,8ˆ¨ ¨ ¨ˆ`q,8 to `1pJ pm,nqq and use interpolation techniques
to improve the `q,1-norm (by weakening the `q,8-norm). This is done in Theorem 8.2.1.
What happens here is that, since in the estimate in Proposition 8.1.1 some of the variables
have to be decreasing, we cannot use general multilinear interpolation, but interpolation
in cones instead (a more detailed explanation is given in Section 8.2).

8.1 First bound for the sum

As we announced, our first step towards the proof of Theorem 8.0.1 is to get a bound for
a sum like that in (8.1). This becomes the main result of this section.

Proposition 8.1.1. Let 1 ă r ď 2 and m ě 2. Define q :“ pmr1q1. There exists Cm,r ą 1
so that for every n P N, every P P PpmCnq, every zp1q, . . . , zpmq P Cn and 1 ď k ď m ´ 1
we have

ÿ

1ďj1ď¨¨¨ďjmďn

ˇ

ˇcjpP qz
p1q
j1
¨ ¨ ¨ z

pkq
jk
z
pk`1q˚
jk`1

¨ ¨ ¨ z
pmq˚
jm

ˇ

ˇ ď Cm,r}z
pkq}`q,1

ź

i‰k

}zpiq}`q,8}P }Ppm`nr q .

The proof requires some work, that we prepare with a few lemmas. But before let us
make a couple of elementary comments. First of all, by definition,

z˚k ď }z}`q,8
1

k1{q
(8.2)

for every z P Cn and, then
M
ÿ

k“N

z˚k ď }z}`q,8

M
ÿ

k“N

1

k1{q
. (8.3)

Also, for ´1 ‰ α ă 0,

M
ÿ

k“N

nα “ Nα `

M
ÿ

k“N`1

nα ď Nα `

ż M

N
xαdx “ Nα `

1

α` 1

`

Mα`1 ´Nα`1
˘

. (8.4)

Lemma 8.1.2. Let n, k ě 1 and 1 ď q ă 8. Then for every zp1q, . . . , zpkq P Cn and
1 ď j ď n we have

ÿ

1ďj1ď¨¨¨ďjkďj

|z
p1q
j1
. . . z

pkq
jk
| ď pq1qkj

k
q1

ź

1ďiďk

}zpiq}`q,8 .

Proof. We proceed by induction on k. For k “ 1 the statement is a straightforward
consequence of (8.3) and (8.4). Assume that the result holds for k ´ 1. Then

ÿ

1ďj1ď¨¨¨ďjkďj

|z
p1q
j1
¨ ¨ ¨ z

pkq
jl
| “

j
ÿ

jk“1

|z
pkq
jk
|

´

ÿ

1ďj1ď¨¨¨ďjk´1ďjk

|z
p1q
j1
. . . z

pk´1q
jk´1

|

¯

ď pq1qk´1
ź

1ďiďk´1

}zpiq}`q,8j
k´1
q1

k

j
ÿ

jk“1

|z
pkq
jk
| ď pq1qkj

k´1
q1 j

1
q1

ź

1ďiďk

}zpiq}`q,8 ,

which concludes the proof.
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Lemma 8.1.3. Let 1 ă r ď 2, m ě 3 and n P N. Fix q :“ pmr1q1 and 1 ď k ď m´ 2. For
every zpi1q, . . . , zpikq P Cn and 1 ď t ď n we have

ÿ

tďj1ď¨¨¨ďjkďn

|z
pi1q˚
j1

. . . z
pikq˚
jk

|j
1
r
´ 1
q

k ď

´

ź

1ďlďk

` mr1

m´ l ´ 1
`

1

t

˘

¯

t
k`1
q1
´ 1
r1

´

ź

1ďlďk

}zpilq}`q,8

¯

.

Proof. First of all let us note that a simple computation shows that s
q1 ´

1
r1 ď ´

1
mr1 ă 0

for every 1 ď s ď m´ 1. We now proceed by induction on k. For k “ 1 we use (8.3) and
(8.4) to have

n
ÿ

j“t

|z˚j |j
1
r
´ 1
q ď }z}`q,8

n
ÿ

j“t

j
2
q1
´ 1
r1
´1

ď }z}`q,8

´

t
2
q1
´ 1
r1 ´ p

2

q1
´

1

r1
q´1t

2
q1
´ 1
r1

¯

“
` r1m

m´ 2
`

1

t

˘

t
2
q1
´ 1
r1 }z}`q,8 .

Let us suppose now that the statement holds for k ´ 1 and prove it for k.

ÿ

tďj1ď¨¨¨ďjkďn

|z
pi1q˚
j1

¨ ¨ ¨ z
pikq˚
jk

|j
1
r
´ 1
q

k

“

n
ÿ

j1“t

|z
pi1q˚
j1

|
ÿ

j1ďj2ď¨¨¨ďjkďn

|z
pi2q˚
j2

. . . z
pikq˚
jk

|j
1
r
´ 1
q

k

ď

n
ÿ

j1“t

|z
pi1q˚
j1

|

´

ź

1ďlďk´1

` mr1

m´ l ´ 1
`

1

j1

˘

¯

j
k
q1
´ 1
r1

1

´

ź

2ďlďk

}zpilq}`q,8

¯

ď

´

ź

1ďlďk´1

` mr1

m´ l ´ 1
`

1

t

˘

¯´

ź

2ďlďk

}zpilq}`q,8

¯

n
ÿ

j1“t

|z
pi1q˚
j1

|j
k
q1
´ 1
r1

1

ď

´

ź

1ďlďk´1

` mr1

m´ l ´ 1
`

1

t

˘

¯´

ź

1ďlďk

}zpilq}`q,8

¯

n
ÿ

j1“t

j
k`1
q1
´ 1
r1
´1

1

ď

´

ź

1ďlďk´1

` mr1

m´ l ´ 1
`

1

t

˘

¯´

ź

1ďlďk

}zpilq}`q,8

¯

t
k`1
q1
´ 1
r1

´1

t
´
`k ` 1

q1
´

1

r1
˘´1

¯

“

´

ź

1ďlďk´1

` mr1

m´ l ´ 1
`

1

t

˘

¯´

ź

1ďlďk

}zpilq}`q,8

¯

t
k`1
q1
´ 1
r1

´1

t
`

mr1

m´ k ´ 1

¯

.

Lemma 8.1.4. Let 1 ă r ď 2, m ě 3. Fix q :“ pmr1q1 and 1 ď k ď m ´ 2. For every
zp1q, . . . , zpkq P Cn we have

ÿ

1ďj1ď¨¨¨ďjm´1ďn

|z
p1q
j1
¨ ¨ ¨ z

pkq
jk
z
pk`1q˚
jk`1

¨ ¨ ¨ z
pm´1q˚
jm´1

|j
1
r
´ 1
q

m´1 ď pq
1`1qm´2}zpkq}`q,1

ź

1ďiďm´1
i‰k

}zpiq}`q,8 .
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Proof. We begin by splitting the sum in a convenient way

ÿ

1ďj1ď¨¨¨ďjm´1ďn

|z
p1q
j1
¨ ¨ ¨ z

pkq
jk
z
pk`1q˚
jk`1

¨ ¨ ¨ z
pm´1q˚
jm´1

|j
1
r
´ 1
q

m´1

“

n
ÿ

jk“1

|z
pkq
jk
|

´

ÿ

jkďjk`1ď¨¨¨ďjm´1ďn

|z
pk`1q˚
jk`1

. . . z
pm´1q˚
jm´1

|j
1
r
´ 1
q

m´1

¯´

ÿ

1ďj1ď¨¨¨ďjk´1ďjk

|z
p1q
j1
. . . z

pk´1q
jk´1

|

¯

.

We fix jk and bound the first block using Lemma 8.1.3, taking into account that we have
now m´ k ´ 1 z’s and that 1

jk
` mr1

m´l´1 ď q1 ` 1 for every 1 ď l ď m´ k ´ 1,

ÿ

jkďjk`1ď¨¨¨ďjm´1ďn

|z
pk`1q˚
jk`1

. . . z
pm´1q˚
jm´1

|j
1
r
´ 1
q

m´1

ď j
m´k
q1
´ 1
r1

k

´

ź

1ďlďm´k´1

1

jk
`

mr1

m´ l ´ 1

¯´

ź

k`1ďiďm´1

}zpiq}`q,8

¯

ď j
m´k
q1
´ 1
r1

k pq1 ` 1qm´k´1
ź

k`1ďiďm´1

}zpiq}`q,8 .

With this, and bounding the second block using Lemma 8.1.2 we get

ÿ

1ďj1ď¨¨¨ďjm´1ďn

|z
p1q
j1
¨ ¨ ¨ z

pkq
jk
z
pk`1q˚
jk`1

¨ ¨ ¨ z
pm´1q˚
jm´1

|j
1
r
´ 1
q

m´1

ď pq1 ` 1qm´2
ź

i‰k

}zpiq}`q,8

n
ÿ

jk“1

|z
pkq
jk
|j
k´1
q1
`m´k

q1
´ 1
r1

k .

It easy to see that k´1
q1 `

m´k
q1 ´

1
r1 “

1
q´1. Therefore, using Hardy-Littlelwood rearrangement

inequality in Lemma 6.3.5 we have

n
ÿ

jk“1

|z
pkq
jk
|j

1
q
´1

k ď

n
ÿ

jk“1

|pzpkqq˚jk |j
1
q
´1

k “ }zpkq}`q,1 .

As it was the case for the study of holomorphic functions, Theorem 2.1.7 (in fact (2.9))
is a crucial tool for the proof of Proposition 8.1.1.

Proof of Proposition 8.1.1. We begin by using Hölder’s inequality and (2.9) (noting that
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8.2. Real interpolation on cones.

|i| ď pm´ 1q! for every i P J pm´ 1, nq) and (8.2) to have

ÿ

jPJ pm,nq

ˇ

ˇcjpP qz
p1q
j1
¨ ¨ ¨ z

pkq
jk
z
pk`1q˚
jk`1

¨ ¨ ¨ z
pmq˚
jm

ˇ

ˇ

“
ÿ

1ďj1ď¨¨¨ďjm´1ďn

|z
p1q
j1
. . . z

pm´1q˚
jm´1

|

n
ÿ

jm“jm´1

|cjpP qz
pmq˚
jm

|

ď
ÿ

jPJ pm´1,nq

|z
p1q
j1
. . . z

pm´1q˚
jm´1

|

´

n
ÿ

jm“jm´1

cjpP q
r1
¯

1
r1
´

n
ÿ

jm“jm´1

|z
pmq˚
jm

|r
¯

1
r

ďpm´ 1q!
1
rme1`m´1

r }P }Ppm`nr q}z
pmq}`q,8

ÿ

jPJ pm´1,nq

|z
p1q
j1
. . . z

pm´1q˚
jm´1

|

´

n
ÿ

jm“jm´1

j
´ r
q

m

¯
1
r
.

Observe now that, for each N P N we have N´r{q ď 2r{qx´r{q for every N ď x ă N ` 1.
Then

n
ÿ

jm“jm´1

j
´ r
q

m ď 2
r
q

ż n

jm´1

x
´ r
q dx ď 2

r
q

q

r ´ q
j

1´ r
q

m´1 .

The proof now finishes with a straightforward application of Lemma 8.1.4.

8.2 Real interpolation on cones.

Now we are going to look at summability inequalities for polynomials from the point of
view of its associated multilinear mappings. We fix a polynomial P P PpmCnq and consider
the mapping Cn ˆ ¨ ¨ ¨ ˆ Cn Ñ `1pJ pm,nqq, given by

pzp1q, . . . , zpmqq ÞÑ
`

cjpP qz
p1q
j1
. . . z

pmq
jm

˘

jPJ pm,nq . (8.5)

Note that, since everything here is finite dimensional, the mapping is well defined. The
idea is, then, to consider norms on the domain spaces so that the norm of this mapping is
bounded by a term involving the norm of the polynomial and some constant independent
of n. Since the inequality that we get in Proposition 8.1.1 requires some variables to be
decreasing we have to restrict ourselves to cones of decreasing sequences. To be more
precise, if we denote `dq,s :“ tz P `q,s : |z| “ z˚u for 1 ď q, s ď 8, Proposition 8.1.1
tells us that there is a constant Cm,r ą 1 (independent of P and n) such that, for every
1 ď k ď m´ 1, the mapping

Tk : `nq,8 ˆ ¨ ¨ ¨ ˆ `
n
q,8

looooooooomooooooooon

k´1

ˆ`nq,1 ˆ p`
n
q,8q

d ˆ ¨ ¨ ¨ ˆ p`nq,8q
d

looooooooooooomooooooooooooon

m´k

Ñ `1pJ pm,nqq, (8.6)

given by (8.5) satisfies
}Tk} ď Cm,r}P }Ppm`nr q. (8.7)

All these mappings have the same defining formula (which is m-linear), so it is tempting
to apply multilinear interpolation. But, since we need to restrict ourselves to the cone of
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Chapter 8. Monomial convergence for Ppm`rq

non-increasing sequences in the last m´ k variables, we are not able to directly apply the
classical multilinear interpolation results, and we will have to apply interpolation on cones.
For the general theory of interpolation we follow (and refer the reader to) [BL76]. As
far as we know there is no theory of interpolation of multilinear mappings definded on
cones of normed spaces. Since (as we have already explained) we have to consider linear
operators on cones, we use the K-method of interpolation for operators on the cone of
non-increasing sequences, as presented in [CM96]. Then the main result of this section,
from which Theorem 8.0.1, follows is the following.

Theorem 8.2.1. Let 1 ă r ď 2 and m ě 3. Define q :“ pmr1q1 and

s “

$

’

&

’

%

2 if m “ 3
3`
?

5
2 if m “ 4
m

logpmq if m ě 5

There exists a constant Cm,r ě 1 such that, for every P P PpmCnq the m-linear mapping

T : p`nq,sq
d ˆ ¨ ¨ ¨ ˆ p`nq,sq

d
loooooooooooomoooooooooooon

m´1

ˆp`nq,8q
d Ñ `1pJ pm,nqq

given by

pzp1q, . . . , zpmqq ÞÑ
`

cjpP qz
p1q
j1
. . . z

pmq
jm

˘

jPJ pm,nq

satisfies
}T } ď Cm,r}P }Ppm`nr q .

Remark 8.2.2. If we take zp1q “ . . . “ zpmq “ z and observe that }z}`q,8 ď }z}`q,s ,
Theorem 8.2.1 gives

ÿ

1ďj1ď¨¨¨ďjmďn

|cjpP qz
˚
j1 ¨ ¨ ¨ z

˚
jm | ď Cm,r}z}

m
`q,s}P }Ppm`nr q

for every P P PpmCnq and z P Cn. A standard argument shows that z˚ P monPpm`rq
for every z P `q,s and, then, Corollary 3.3.6 implies `q,s Ă monPpm`rq. This gives Theo-
rem 8.0.1.

Before we proceed, let us fix some notation. Given a Banach function lattice X (in
particular a sequence space or a finite dimensional Banach space, on which we are mainly
interested), we write Xd for the cone of non-increasing functions in X. If Y is any Banach
space and S : X Ñ Y is a linear operator we can restrict it to the cone and denote

}S : Xd Ñ Y } “ inft}Spxq}Y : x P Xd, }x} ă 1u . (8.8)

Clearly neither is Xd a vector space, nor is }S} a norm. We will later use an analogous
notation for m-linear mappings. We are now ready to state our main tool to interpolate
in cones. It is a direct corollary of [CM96, Theorem 1–(b)] (recall that we are using the
notation as introduced there).
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8.2. Real interpolation on cones.

Theorem 8.2.3. Given a pair of quasi-Banach function lattices pX0, X1q, a pair of quasi-
Banach spaces pY0, Y1q and a linear operator S defined both X0 Ñ Y0 and X1 Ñ Y1 with

}S : Xd
0 ÝÑ Y0} ďM0 and }S : Xd

1 ÝÑ Y1} ďM1 .

Then for every 0 ă θ ă 1 the operator S : pXd
0 , X

d
1 qθ,a ÝÑ pY0, Y1qθ,a is well defined and

}S : pXd
0 , X

d
1 qθ,a ÝÑ pY0, Y1qθ,a} ďM1´θ

0 M θ
1 .

We are going to apply this to Lorentz sequence spaces. In this case, it was proved in
[Sag72] (see also [CM96, Theorem 4]) that

p`dq,p0
, `dq,p1

qθ,a “ p`q,p0 , `q,p1q
d
θ,a .

On the other hand, it is known (see for example [BL76, Theorem 5.3.1]) that whenever
1
p “

1´θ
p0
` θ

p1
we have

p`q,p0 , `q,p1qθ,p “ `q,p,

and therefore

p`dq,p0
, `dq,p1

qθ,p “ `dq,p. (8.9)

Finally [BL76, Theorem 3.7.1] gives that (if p0, p1, p are related as before)

p`1q,p0
, `1q,p1

qθ,p “ p`q,p0 , `q,p1q
1
θ,p “ `1q,p . (8.10)

The idea now is to use Theorem 8.2.3 to interpolate multilinear mappings. Let us
explain how we are going to do this. Let X1, . . . , Xm be Banach function lattices (in
our case they will always be finite dimensional Lorentz spaces), Y some Banach space
(`1pJ pm,nq for us) and some continuous m-linear T : X1 ˆ ¨ ¨ ¨ ˆ Xm Ñ Y (for us given
by (8.5)). Now we fix 1 ď j ‰ k ď m and, for each i ‰ j, k pick zpiq P Xi and ϕ P Y 1 and
consider v “ pzp1q, . . . , zpmq, ϕq. Now we define

Tv : Xj Ñ X 1k by
`

Tvpz
pjqq

˘

pzpkqq “ ϕpT pzp1q, . . . , zpmqqq. (8.11)

An easy computation shows that

}Tv} ď }ϕ} }T }
ź

i‰j,k

}zpiq} , (8.12)

and that

}T } “ sup
ϕPBY 1 ,z

piqPBXi

}Tv}. (8.13)

Observe that in this procedure we may consider Xd
i for every i except for i “ k, getting

the same estimate for the norm (defining the “norm” for multilinear mappings on cones
with the same idea as in (8.8)). We are now ready to present the main technical tool for
the proof of Theorem 8.2.1.
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Chapter 8. Monomial convergence for Ppm`rq

Lemma 8.2.4. Let m ě 3, 1 ă r ď 2, define q :“ pmr1q1 and let Cm,r be the constant
from Proposition 8.1.1. For each 0 ă θ ă 1, every P P PpmCnq and all 1 ď k ď m´ 2 the
m-linear mapping

T kpθq :
`

`n
q,p 1

1´θ
qk

˘d
ˆ
`

`n
q, 1
θ

˘d
ˆ ¨ ¨ ¨ ˆ

`

`n
q, 1
θ

˘d

looooooooooooomooooooooooooon

k

ˆ
`

`nq,8
˘d
ˆ ¨ ¨ ¨ ˆ

`

`nq,8
˘d

looooooooooooomooooooooooooon

m´k´1

Ñ `1pJ pm,nqq

given by (8.5) satisfies
}T kpθq} ď Cm,r}P }Ppm`nr q.

Proof. We proceed by induction on k and begin with the case k “ 1. We consider the
mappings (see (8.6))

T1 : `nq,1 ˆ p`
n
q,8q

d ˆ p`nq,8q
d ˆ ¨ ¨ ¨ ˆ p`nq,8q

d
loooooooooooooooooooomoooooooooooooooooooon

m´1

Ñ `1pJ pm,nqq

T2 : `nq,8 ˆ `
n
q,1 ˆ p`

n
q,8q

d ˆ ¨ ¨ ¨ ˆ p`nq,8q
d

looooooooooooomooooooooooooon

m´2

Ñ `1pJ pm,nqq.

We fix zp3q, . . . , zpmq P p`n8q
d and ϕ P

´

`1pJ pm,nqq
¯1

and writing v “ pzp3q, . . . , zpmq, ϕq

define, following (8.11), two linear operators

pT1qv :
`

`nq,8
˘d
Ñ

`

`nq,1
˘1

and pT2qv :
`

`nq,1
˘d
Ñ

`

`nq,8
˘1

that, by (8.7) and (8.12), satisfy (for i “ 1, 2)

}pTiqv} ď Cm,r}P }Ppm`nr q}z
p3q}`q,8 ¨ ¨ ¨ }z

pmq}`q,8}ϕ}`1pJ pm,nqq1 .

Now we interpolate, using Theorem 8.2.3 and equations (8.9) and (8.10), to have
›

›

›

`

T 1pθq
˘

v
:
`

`n
q, 1
θ

˘d
Ñ

`

`n
q, 1

1´θ

˘1
›

›

›
ď Cm,r}P }Ppm`nr q}z

p3q}`q,8 ¨ ¨ ¨ }z
pmq}`q,8}ϕ}`1pJ pm,nqq1

for every 0 ă θ ă 1. Using equation (8.13) and taking supremum, this immediately gives

›

›T 1pθq : `n
q, 1

1´θ

ˆ
`

`n
q, 1
θ

˘d
ˆ
`

`nq,8
˘d
ˆ ¨ ¨ ¨ ˆ

`

`nq,8
˘d

looooooooooooomooooooooooooon

m´2

Ñ `1pJ pm,nqq
›

› ď Cm,r}P }Ppm`nr q .

Now let us assume that, for 1 ď k ď m´ 2,

T k´1pθq : `n
q,p 1

1´θ q
k´1 ˆ p`

n
q, 1
θ

qd ˆ ¨ ¨ ¨ ˆ p`n
q, 1
θ

qd

looooooooooooomooooooooooooon

k´1

ˆp`nq,8q
d ˆ ¨ ¨ ¨ ˆ p`nq,8q

d
looooooooooooomooooooooooooon

m´k

Ñ `1pJ pm,nqq

has norm ď Cm,r}P }Ppm`nr q. On the other hand consider the mapping defined by Theo-
rem 8.1.1 (see (8.6))

Tk`1 : `nq,8 ˆ ¨ ¨ ¨ ˆ `
n
q,8

looooooooomooooooooon

k

ˆ`nq,1 ˆ p`
n
q,8q

d ˆ ¨ ¨ ¨ ˆ p`nq,8q
d

looooooooooooomooooooooooooon

m´k´1

Ñ `1pJ pm,nqq
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that (recall (8.12)) also has norm ď Cm,r}P }Ppm`nr q. Since }`n
q, 1
θ

ãÑ `nq,8} “ 1 we have

(recall (8.8))

Tk`1 : `nq,8 ˆ p`
n
q, 1
θ

qd ˆ ¨ ¨ ¨ ˆ p`n
q, 1
θ

qd

looooooooooooomooooooooooooon

k´1

ˆ`q,1 ˆ p`
n
q,8q

d ˆ ¨ ¨ ¨ ˆ p`nq,8q
d

looooooooooooomooooooooooooon

m´k´1

Ñ `1pJ pm,nqq

has again norm bounded by Cm,r}P }Ppm`nr q. We fix ϕ P
`

`1pJ pm,nqq
˘1

and zpiq P pCnqd for

i ‰ 1, k and, taking v “ pzp2q, . . . , zpkq, zpk`2q, . . . , zpmq, ϕq we have, by (8.11) and (8.12)

›

›pT k´1pθqqv : p`nq,8q
d Ñ

`

`n
q,p 1

1´θ
qk´1

˘1›
›

ď Cm,r}P }Ppm`nr q}ϕ}`1pJ pm,nqq1}z
p2q}`

q, 1
θ

¨ ¨ ¨ }zpkq}`
q, 1
θ

}zpk`2q}`q,8 ¨ ¨ ¨ }z
pmq}`q,8

and

›

›pTk`1qv : p`nq,1q
d Ñ

`

`nq,8
˘1›
›

ď Cm,r}P }Ppm`nr q}ϕ}`1pJ pm,nqq1}z
p2q}`

q, 1
θ

¨ ¨ ¨ }zpkq}`
q, 1
θ

}zpk`2q}`q,8 ¨ ¨ ¨ }z
pmq}`q,8 .

Once again, we may interpolate using Theorem 8.2.3, (8.9) and (8.10) to have

›

›pT kpθqv : p`n
q, 1
θ

qd Ñ
`

`n
q, 1

p1´θqk

˘1›
›

ď Cm,r}P }Ppm`nr q}ϕ}`1pJ pm,nqq1}z
p2q}`

q, 1
θ

¨ ¨ ¨ }zpkq}`
q, 1
θ

}zpk`2q}`q,8 ¨ ¨ ¨ }z
pmq}`q,8

for every 0 ă θ ă 1. Taking supremum as before this gives that the norm of the multilinear
form T kpθq

›

›T kpθq : `n
q,p 1

1´θ q
k ˆ p`

n
q, 1
θ

qd ˆ ¨ ¨ ¨ ˆ p`n
q, 1
θ

qd

looooooooooooomooooooooooooon

k

ˆp`nq,8q
d ˆ ¨ ¨ ¨ ˆ p`nq,8q

d
looooooooooooomooooooooooooon

m´k´1

Ñ `1pJ pm,nqq
›

›,

is bounded by ď Cm,r}P }Ppm`nr q for every 0 ă θ ă 1.

Proof of Theorem 8.2.1. For m ě 5, we choose θ “
logpm` 3

2
q

m´1`logpm` 3
2
q

and k “ m ´ 2. Then

1
θ ě

m
logpmq and

ˆ

1

1´ θ

˙k

“

´

1`
logpm` 3

2q

m´ 1

¯m´2
ě

m

logm
.

Therefore }`n
q,p 1

1´θ q
k ãÑ `nq, m

logpmq
} “ }`n

q, 1
θ

ãÑ `nq, m
logpmq

} “ 1. Using Lemma 8.2.4 with

k “ m´ 2 the result follows. For m “ 3 take θ “ 1
2 and k “ 1 in Lemma 8.2.4, for m “ 4

take θ “ 3
2 ´

?
5

2 and k “ 2.
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Chapter 8. Monomial convergence for Ppm`rq

We finish this section with some comments on the hypercontractivity of the inclusion
of `q,s in monPpm`rq. For the `8 case it is known (see [BDF`17, Theorem 2.1]) that
the inclusion ` 2m

m´1
,8 in monPpm`8q is hypercontractive in the sense that there exists a

constant C ą 0 such for every P P Ppm`8q,
ÿ

jPJ pm,nq
|cjpP qzj| ď Cm}z}m` 2m

m´1 ,8
}P }P pm`8q.

Remark 8.2.5. For 1 ă r ď 2, although we do not know if `q,8 lies in the set monPpm`rq
it is easy to see that we cannot expect to have a hypercontractive inequality as above.

If there exists such a constant, proceeding as in the proof of the upper inclusion in
Theorem 6.2.1 (see (6.3)) with m “ tlogpn` 1qu we would have that

1

}z}`q,logm
logpn` 1q1´

1
r

n
ÿ

j“1

|z˚j |

is bounded independently of n for every z P `q,logm. Take now z “ pj´1{q logpjq´2{ logpmqqj .

Then }z}`q,logm
ď

´

ř8
j“1

1
j log2pjq

¯
1

logm
. But,

1

}z}`q,logm
logpn` 1q1´

1
r

n
ÿ

j“1

|z˚j | "
1

logpn` 1q1´
1
r

n
ÿ

j“1

1

j1{q logpjq
2

logm

"
e2

c logpn` 1q1´
1
r

n
ÿ

j“1

1

j1{q
ě

e2

c logpn` 1q1´
1
r

n1{q1q1.

Since q1 “ mr1 “ tlogpn ` 1qur1, the last expression is " logpnq
1
r . This shows that there

exists no constant C ą 0 such that for every n and m and all P P PpmCnq we have

ÿ

jPJ pm,nq
|cjpP qzj| ď Cm}z}m`q,logm

}P }Ppm`nr q.

On the other hand, applying carefully the ideas developed in this section, it is possible
to obtain hypercontractive inequalities in some cases.

Remark 8.2.6. Given ε ą 0, there exists a constant C ą 0 such that for every m ě 3,
n P N and every P P PpmCnq

ÿ

jPJ pm,nq
|cjpP qzj| ď Cp1` εqm}P }Ppm`nr q}z}

m
`nq,2
.

To see this fix 1 ă r ď 2, m ě 3, and take z, zpm´2q, zpm´1q, w P Cn such that zpm´1q “
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zpm´1q˚ and w “ w˚. Then we have, using Theorem 2.1.7 and Lemma 3.4.3,

ÿ

jPJ pm,nq
|cjpP qzj1 . . . zjm´3z

pm´2q
jm´2

z
pm´1q
jm´1

wjm |

ď em}P }Ppm`nr q
ÿ

jPJ pm´1,nq

|zj1 . . . zjm´3z
pm´2q
jm´2

z
pm´1q
jm´1

| ¨

´

pm´ 1qm´1

αpjqαpjq

¯1{r
`

n
ÿ

jm“jm´1

wrjm
˘1{r

ď em3Cmer
1´1
}P }Ppm`nr q

n
ÿ

jm´2“1

|z
pm´2q
jm´2

|

´

ÿ

jPJ pm´3,jm´2q

|j||zj|
¯

n
ÿ

jm´1“jm´2

|z
pm´1q
jm´1

|
`

n
ÿ

jm“jm´1

wrjm
˘1{r

ď Cmer
1

}w}`q,8}P }Ppm`nr q

n
ÿ

jm´2“1

|z
pm´2q
jm´2

|

´

jm´2
ÿ

l“1

|zl|
¯m´3 n

ÿ

jm´1“jm´2

|z
pm´1q
jm´1

|j
1
r
´ 1
q

m´1

ď Cmer
1

}w}`q,8}P }Ppm`nr q

n
ÿ

jm´2“1

|z
pm´2q
jm´2

|

´

pjm´2q
1´ 1

q }z}`q,8

¯m´3
}zpm´1q}`q,8pr

1 ` 1qj
2
q1
´ 1
r1

m´2

ď pr1 ` 1qCmer
1

}w}`q,8}z}
m´3
`q,8

}zpm´2q}`q,1}z
pm´1q}`q,8}P }Ppm`nr q,

where in the penultimate inequality we used the bound of the identity from `k1 to `kq,8 that
may be found for example in [DM06, Lemma 22]. On the other hand, we also have,

ÿ

jPJ pm,nq
|cjpP qzj1 . . . zjm´3z

pm´2q
jm´2

z
pm´1q
jm´1

wjm |

ď em}P }Ppm`nr q
ÿ

jPJ pm´1,nq

|zj1 . . . zjm´3z
pm´2q
jm´2

z
pm´1q
jm´1

| ¨

´

pm´ 1qm´1

αpjqαpjq

¯1{r
`

n
ÿ

jm“jm´1

wrjm
˘1{r

ď em3Cmer
1´1
}P }Ppm`nr q

n
ÿ

jm´1“1

|z
pm´1q
jm´1

|

´

ÿ

jPJ pm´3,jm´2q

|j||zj|
¯

jm´1
ÿ

jm´2“1

|z
pm´2q
jm´2

|
`

n
ÿ

jm“jm´1

wrjm
˘1{r

ď Cmer
1

}w}`q,8}P }Ppm`nr q

n
ÿ

jm´1“1

|z
pm´1q
jm´1

|

´

jm´2
ÿ

l“1

|zl|
¯m´3

jm´1
ÿ

jm´2“1

|z
pm´2q
jm´2

|j
1
r
´ 1
q

m´1

ď Cmer
1

}w}`q,8}P }Ppm`nr q

n
ÿ

jm´1“1

|z
pm´1q
jm´1

|

´

pjm´2q
1´ 1

q }z}`q,8

¯m´3
j

1´ 1
q

m´1}z
pm´2q}`q,8j

1
r
´ 1
q

m´1

“ Cmer
1

}w}`q,8}z}
m´3
`q,8

}zpm´2q}`q,8}z
pm´1q}`q,1}P }Ppm`nr q.

Thus, proceeding as in Lemma 8.2.4 we may construct an operator which is bounded
from `dq,8 to

`

`q,1
˘1

and also from `dq,1 to
`

`q,8
˘1

. Applying the K-interpolation method
restricted to the cone of non-increasing sequences to this operator we can conclude that
for any z “ z˚,

ÿ

jPJ pm,nq
|cjpP qzj| ď

a

p1` r1qCmer
1

}z}m´2
`q,8

}z}2`q,2}P }Ppm`nr q ď Cp1` εqm}P }Ppm`nr q}z}
m
`nq
.
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Chapter 8. Monomial convergence for Ppm`rq

Therefore, by Corollary 3.3.6, we have proved our claim.

With some extra work it can proved, in a similar way, that given any s ě 1 and ε ą 0,
there exist some m0 and some C ą 0 such that for every n P N, all m ě m0 and every
polynomial P P PpmCnq we have

ÿ

jPJ pm,nq
|cjpP qzj| ď Cp1` εqm}P }Ppm`nr q}z}

m
`nq,s
.

8.3 Multipliers

A sequence panqnPN is a multiplier for monPpm`rq if

panqnPN ¨ `r Ă monPpm`rq,

where the product panqnPN¨`r is just the coordinate-wise multiplication. Let p “ pp1, p2, . . . q
be the sequence of the prime numbers. It is well-known that for r ě 2, the sequence 1

p
m´1
2m

is a multiplier for monPpm`rq (this can be seen as an immediate consequence of [BDS19,
Theorem 5.1 (3) ]).

For 1 ă r ă 2 in [BDS19, Theorem 5.3.] the authors prove this up to an ε, showing
that for each m and every ε ą 1

r

1

pσm
`

logppq
˘ε ¨ `r Ă monPpm`rq, (8.14)

where σm “
m´1
m

`

1´ 1
r

˘

. As a consequence of our results, we can improve this, showing
that, for 1 ă r ď 2, even the sequence p 1

nσm qnPN is a multiplier for monPpm`rq.

Theorem 8.3.1. For 1 ă r ă 2 and m ě 3 put σm “
m´1
m

`

1´ 1
r

˘

. Then,

` 1

nσm

˘

n
¨ `r Ă monPpm`rq,

and σm is best possible.

Proof. As a consequence of Theorem 8.0.1 we know that `q,r Ă monPpm`rq, thus to prove
the result it is sufficient to see that if z P `r then,

`

1
nσm

˘

n
¨z P `q,r. Suppose that z P `r is an

arbitrary element (not necessarily equal to z˚). Since r ą q we know that the semi-norm
} ¨ }`q,r is equivalent to the following maximal norm (as stated in (1.2))

}w}`pq,rq “

˜

8
ÿ

n“1

n
r
q
´1

˜

1

n

n
ÿ

k“1

w˚k

¸r¸1{r

.

Then, if w “
`

zn
nσm

˘

n
, by the Hardy-Littlewood rearrangement inequality (Lemma 6.3.5) it

is easy to see that
n
ÿ

k“1

w˚k ď
n
ÿ

k“1

z˚k
1

kσm
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for every n P N. Then

›

›

›

´ zn
nσm

¯

n

›

›

›

`q,r
„

›

›

›

´ zn
nσm

¯

n

›

›

›

`pq,rq

ď

˜

8
ÿ

n“1

n
r
q
´1

˜

1

n

n
ÿ

k“1

z˚k
1

kσm

¸r¸1{r

“

›

›

›

›

ˆ

z˚n
nσm

˙

n

›

›

›

›

`pq,rq

„

›

›

›

›

ˆ

z˚n
nσm

˙

n

›

›

›

›

`q,r

“

˜

8
ÿ

n“1

ˆ

p
z˚n
nσm

q˚n
1
q
´ 1
r

˙r
¸1{r

“ }z}`r ă 8,

where, in the last equality, we have used the fact that σm “
1
q ´

1
r .

To see that the exponent is optimal take, as always, q “ pmr1q1. Now, if pznqn “
´

1
n1{r logpn`1q2{r

¯

n
P `r for every ε ą 0 it is easy to check that the sequence

`

zn
nσm´ε

˘

n
R

`q,8 Ą monPpm`rq.

For m “ 2 we cannot show that the sequence
`

1
nσ2

˘

n
is a multiplier for monPp2`rq

but using the fact that `q Ă monPp2`rq, Theorem 8.0.1, it is easy to see that we have the
inclusion

1

pσ2
`

logppq
˘ε ¨ `r Ă monP

`

2`r
˘

,

for every ε ą 0 extending [BDS19, Theorem 5.3.] (see also (8.14)). We leave the details to
the reader.
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Appendix A

Monomial series expansion

We dedicate this appendix to the proof of Proposition 3.1.2:

Proposition A.0.1 (Proposition 3.1.2). Given 1 ă p, q ď 8, for X “ `p,q we have

monFpRq “
!

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P FpRq

)

,

for FpRq being HbpXq, H8pBXq or PpmXq for any m P N.

Recall that, in order to make sense, the convergence for the monomial expansion of
a given holomorphic function needs to be unconditional. As the unconditional and the
absolute convergence are equivalent concepts in C, for every family of holomorphic function
on a Reinhardt domain FpRq it holds

!

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P FpRq

)

Ă monFpRq. (A.1)

Now we will give some results needed to prove the reverse inclusion.
Given a Banach sequence space X we may consider its Köthe dual space

Xˆ :“

#

y P CN :
ÿ

kě1

|ykxk| ă 8 for all x P X

+

,

which endowed with the norm

}y}Xˆ :“ sup
xPBX

ÿ

kě1

|ykxk|,

is a symmetric Banach sequence space. It is worth mentioning that for 1 ď p ă 1 it holds
`ˆp “ `p1 and also `ˆ8 “ `1. This shows in particular that the Köthe dual and the classical
dual given by the continuous functionals do not always coincide. Observe that for every
Banach sequence space X it holds Xˆ Ă X 1 isometrically.

129



Appendix A. Monomial series expansion

As for every Banach sequence space X its Köthe dual is again a Banach sequence space
we may consider pXˆqˆ. We will simply denote it by Xˆˆ. It is easy to see X Ă Xˆˆ.

The following is a classic result in the theory of Banach sequence spaces, a proof of this
fact can be found in [Maz10, Teorema 1.3.11].

Remark A.0.2. For every Banach sequence space X the following are equivalent:

a) ren : n P Ns is dense in X.

b) X is separable.

c) X 1 “ Xˆ.

A corollary of the previous remark states that for a separable Banach sequence space
X it holds

pX 1qˆ “ Xˆˆ. (A.2)

Remark A.0.3. Given a separable Banach sequence space X, the set of monomial con-
vergence for the family of linear functionals X 1 “ LpXq “ Pp1Xq is the Köethe dual of X 1,
i.e.,

monX 1 “ monPp1Xq “ pX 1qˆ “ Xˆˆ.

Proof. First, since X is separable, by Remark A.0.2 we have X 1 “ Xˆ. This allows us to
think about X 1 as Banach sequence space itself. Given φ P X 1 we may associate it to a
sequence pφpekqqkPN Ă CN.

On the other hand, for every φ P X 1, as it is a 1-homogeneous polynomial, we have
that aαpφq “ 0 for |rαs| ‰ 1. It is easy to see that aαpφq “ φpekq if α “ ek for every k P N.
For z P CN and φ P X 1 it holds

ÿ

kě1

|φpekqzk| “
ÿ

αPΛp1q

|aαpφqz
α|. (A.3)

Then, if z P pX 1qˆ the left hand side in equation (A.3) sums (is finite) and therefore
z P monX 1. Reversely, z P monX 1 implies that the right hand side is finite for every
φ P X 1 and then z P pX 1qˆ. This shows that monX 1 “ pX 1qˆ “ Xˆˆ using (A.2).

We will see below that, for reflexive and separable Banach sequence spaces our purpose
will be achievable thanks to the previous remark. This is the case of `p,q with 1 ă p ă 8
and 1 ď q ă 8 by Theorem 1.1.4. For `p,8 with 1 ă p ă 8 we will need the following
lemma.

Lemma A.0.4. For 1 ă p ă 8 we have `ˆp,8 “ `p1,1.

Proof. We begin by proving `ˆp,8 Ă `p1,1. Take z P `ˆp,8, then

}z}`p1,1 “ }pk
1
p1
´1
zk˚qkě1}`1

“
ÿ

kě1

|k´1{pz˚k | ă 8,
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since pk´1{pqkě1 P `p,8 and z˚ P `ˆp,8 as it is a symmetric Banach sequence space. We have
proved that z P `p1,1.

On the other hand, let z P `p1,1 and take any x P `q,8. Using the Hardy-Littlewood
rearrangement inequality (Lemma 6.3.5) it follows (using Hölder inequality),

ÿ

kě1

|zkxk| ď
ÿ

kě1

z˚kx
˚
k

“
ÿ

kě1

k´1{pz˚kk
1{px˚k

ď }z}`p1,1}x}`p,8 ă 8,

then z P `ˆp,8.

We will summarize some of the previous results in the following lemma.

Lemma A.0.5. As long as X “ `p,q with 1 ă p ă 8 and 1 ă q ď 8 it follows

monX 1 “ monPp1Xq “ Xˆˆ “ X.

Proof. Let X “ `p,q with 1 ă p, q ă 8, by Theorem 1.1.4 X is reflexive. Since it is also
separable, thanks to Remark A.0.2 and Remark A.0.3, it holds

monPp1Xq Ă pX 1qˆ “ Xˆˆ “ pX 1q1 “ X.

Finally let us take X “ `p,8 with 1 ă p ă 8, which is also separable. Using Remark A.0.3
and the inequality in (A.2) we have

monPp1Xq “ Xˆˆ Ă pXˆq1.

By Lemma A.0.4 and Theorem 1.1.4 we have

pXˆq1 “ p`p1,1q
1 “ `p,8 “ X,

then it follows Xˆˆ Ă pXˆq1 Ă X. Since for every Banach sequence space X Ă Xˆˆ we
have what we wanted.

For every separable Banach sequence space X it holds that X 1 Ă HbpXq Ă H8pBXq
and (3.3) gives that

monH8pBXq Ă monHbpXq Ă monX 1 “ Xˆˆ.

In particular, for those X such that X “ Xˆˆ, we have

monF “

$

’

&

’

%

z P X :
ÿ

αPNpNq0

|aαpfqz
α| ă 8 for every f P F

,

/

.

/

-

, (A.4)

for F being H8pBXq or HbpXq. It should be noted that the importance in the previous
equality is the fact that all the elements in monF lie in X.

The same conclusion suits for the family of homogeneous polynomial, but first we
need the following proposition [DGMSP19, Remark 10.7]. We give the proof here for
completeness.
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Appendix A. Monomial series expansion

Proposition A.0.6. Given X a Banach sequence space for every m P N it holds

monPpm`1Xq Ă monPpmXq.

Proof. Fix u P monPpm`1Xq not null and P P PpmXq. Choose i P N such that ui ‰ 0 and
define Q P Ppm`1Xq by Qpzq “ ziP pzq. It is easy to see that

aαpQq “

#

0 if αi “ 0

aα̃pP q if αi ą 0,

where α̃j “ αj ` δi,j , then

ÿ

αPNpNq0

|aαpP qu
α| “

1

ui

ÿ

αPNpNq0

|aαpP qu
αui|

“
1

ui

ÿ

αPNpNq0

|aα̃pP qu
α̃|

“
1

ui

ÿ

αPNpNq0

|aαpQqu
α| ă 8.

Now, given m P N, and using that monPpmXq Ă Pp1Xq “ pX 1qˆ (which simply follows
from Proposition A.0.6) and proceeding as before we have

monPpmXq “

$

’

&

’

%

z P X :
ÿ

αPNpNq0

|aαpfqz
α| ă 8 for all f P PpmXq

,

/

.

/

-

, (A.5)

for every separable Banach sequence space X such that Xˆˆ “ X.
The following proposition essentially states that, given a separable Banach sequence

space X, any element in the set of monomial convergence for the family H8pBXq must be
inside the ball of X, its proof is given in [DGMSP19, Proposition 20.3].

Proposition A.0.7. Given a Banach sequence space X, it holds XXmonH8pBXq Ă BX .

As we said before, if we use Proposition A.0.7 and Remark A.0.2, for any separable
Banach sequence space such that Xˆˆ “ X we have

monH8pBXq “

$

’

&

’

%

z P BX :
ÿ

αPNpNq0

|aαpfqz
α| ă 8 for all f P H8pBXq

,

/

.

/

-

. (A.6)

Remark A.0.8. Let X be a separable Banach sequence space such that Xˆˆ “ X then

monFpRq “

$

’

&

’

%

z P R :
ÿ

αPNpNq0

|aαpfqz
α| ă 8 for every f P F

,

/

.

/

-

,

for FpRq being H8pBXq, HbpXq or PpmXq for every m P N and, of course, R being BX
or X respectively.
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Note that Remark A.0.8 holds using (A.4) for HbpXq, (A.5) for PpmXq and (A.6) for
H8pBXq.

In [BDF`17, Equation (15)] the authors state that

monH8pBc0q “ monH8pB`8q and monPpmc0q “ monPpm`8q. (A.7)

There they cite [DMP09, Remark 6.4] where it is shown the first assertion in (A.7). The
argument used there comes from a result in [DG89]. In that article Davie and Gamelin
show that every f P H8pBXq can be extended to some pf P H8pBX2q without changing its
norm. For f P HbpXq it is standard that this can also be done and again implies

monHbpc0q “ monHbp`8q. (A.8)

Now thanks to the equations in (A.7) and by Theorem 3.2.2 and Theorem 3.2.3 it
follows

monPpmc0q “ monPpm`8q Ă c0,

monH8pBc0q “ monH8pB`8q Ă Bc0 . (A.9)

Finally by equation (A.8) and Theorem 6.3.2 we have

monHbpc0q “ monHbp`8q Ă c0. (A.10)

The following proposition is a slightly more general version of Proposition 3.1.2, which
we aim to prove in this appendix.

Proposition A.0.9. Let X be `8 or any separable Banach sequence space X such that
Xˆˆ “ X, it holds

monFpRq “

$

’

&

’

%

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P FpRq

,

/

.

/

-

,

for FpRq being H8pBXq, HbpXq or PpmXq for every m P N and, of course, R being BX
or X respectively.

Proof. By (A.1) it is only left to prove

monFpRq Ă

$

’

&

’

%

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P F

,

/

.

/

-

.

Fix z P monFpRq. In the case of X being `8 by equations (A.9) and (A.10) we have
z P c0 or z P Bc0 depending on FpRq. When X is a separable Banach sequence space
Xˆˆ “ X using Remark A.0.8 we have z P R.
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Appendix A. Monomial series expansion

Every f P FpRq is continuous in R as it is holomorphic there. Since ren : n P Ns is
dense in c0 or X we have πnpzq Ñ z, when n Ñ 8, and then fpπnpzqq Ñ fpzq. On the
other hand, as πnpzq P Rn it holds

fpπnpzqq “
ÿ

αPNn0

aαpfqz
α,

and z P monFpRq so the monomial expansion converges absolutely in z, all this together
implies

lim
nÑ8

fpπnpzqq “
ÿ

αPNpNq0

aαpfqz
α.

By the uniqueness of the limit we have fpzq “
ř

αPNpNq0
aαpfqz

α.

Now we are able to achieve the goal of this appendix. The proof follows directly from
what we saw.

Proof of Proposition 3.1.2. Thanks to Lemma A.0.5 it holds that Xˆˆ “ X for X “ `p,q
with 1 ă p ă 8 and 1 ă q ď 8. As X is separable using Proposition A.0.9 it holds

monFpRq “

$

’

&

’

%

z P R : fpzq “
ÿ

αPNpNq0

aαpfqz
α for every f P FpRq

,

/

.

/

-

.

For X “ `8 this is explicitly proved in Proposition A.0.9.
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