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Resumen

Esta tesis tiene como objeto contribuir al estudio de algunos problemas
de análisis geométrico asintótico relativos a aproximaciones volumétricas de
un cuerpo convexo mediante imágenes afines de otro.

Dado un cuerpo convexo K Ă Rn con baricentro en el origen, mostramos
que existe un śımplice S Ă K que tiene también baricentro en el origen tal

que
´

|S|
|K|

¯1{n
ě c?

n
, donde c ą 0 es una constante absoluta y | ¨ | denota

la medida de Lebesgue. Conseguimos esto usando técnicas de geometŕıa
estocástica. Más precisamente, si K está en posición isotrópica, presenta-
mos un método para encontrar śımplices centrados verificando la cota antes
mencionada que funciona con probabilidad extremadamente alta.

Por dualidad, dado un cuerpo convexo K Ă Rn mostramos que existe

un śımplice S que contiene a K con el mismo baricentro tal que
´

|S|
|K|

¯1{n
ď

d
?
n, para alguna constante absoluta d ą 0. Salvo por la constante la

estimación no puede ser mejorada.
Defimos la máxima razón de volumen de un cuerpo convexo K Ă Rn

como lvrpKq :“ supLĂRn vrpK,Lq, donde el supremo se toma sobre todos
los cuerpos convexos L. Probamos la siguiente cota que resulta ajustada en
general: c

?
n ď lvrpKq, para todo cuerpo K (donde c ą 0 es una constante

absoluta). Este resultado mejora la cota anteriormente conocida que es del

orden de
b

n
log logpnq .

Estudiamos el comportamiento asintótico exacto para algunas clases nat-
urales de cuerpos convexos. En particular, si K es la bola unitaria de una
norma unitariamente invariante en Rdˆd (e.g., la bola unidad de la clase
p-Schatten para 1 ď p ď 8), la bola unidad de una norma tensorial en el
producto de espacios `p o K un cuerpo incondicional, probamos que lvrpKq
se comporta como la ráız cuadrada de la dimensión del espacio ambiente

También analizamos el problema de estimar la razón de volumen entre
proyecciones de dos cuerpos convexos en Rn en subespacios de dimensión
proporcional a n.

Palabras clave: Razón de volumen, simplices, cuerpos convexos, poli-
topos aleatorios.
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Abstract

This thesis aims to contribute to the study of some problems of asymp-
totic geometrical analysis concerning volumetric approximations of a convex
body by an affine image of another one. For a convex body K Ă Rn with
barycenter at the origin, we show that there is a simplex S Ă K having

also barycenter at the origin such that
´

|S|
|K|

¯1{n
ě c?

n
, where c ą 0 is an

absolute constant and | ¨ | stands for the Lebesgue measure. This is achieved
using stochastic geometric techniques. More precisely, if K is in isotropic
position, we present a method to find centered simplices verifying the above
bound that works with extremely high probability. By duality, given a con-
vex body K Ă Rn we show that there is a simplex S enclosing K with

the same barycenter such that
´

|S|
|K|

¯1{n
ď d

?
n, for some absolute constant

d ą 0. Up to the constant, the estimate cannot be lessened.
We define the largest volume ratio of given convex body K Ă Rn as

lvrpKq :“ supLĂRn vrpK,Lq, where the sup runs over all the convex bodies
L. We prove the following sharp lower bound: c

?
n ď lvrpKq, for every

body K (where c ą 0 is an absolute constant). This result improves the

former best known lower bound, of order
b

n
log logpnq .

We study the exact asymptotic behaviour of the largest volume ratio for
some natural classes of convex bodies. In particular, if K is the unit ball of
an unitary invariant norm in Rdˆd (e.g., the unit ball of the p-Schatten class
Sdp for any 1 ď p ď 8), the unit ball of a tensor norm on the product of
`p spaces or K is unconditional, we show that lvrpKq behaves as the square
root of the dimension of the ambient space.

We also analyse the problem of estimating the volume ratio between
projections of two bodies in Rn onto subspaces of dimension proportional to
n.

Keywords: Volume ratio, simplices, convex bodies, random polytopes.



iv

Agradecimientos

A Dany Galicer, por su dirección. Por enseñarme el oficio y formarme
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Introduction

Given a real vector space of finite dimension endowed with a norm, its unit
ball is a convex, compact set with non-empty interior (what we call a convex
body). On the other hand, through Minkowski’s functional, any centrally
symmetric convex body in Rn is the unit ball for some norm. So, there is a
close connection between the geometry and the metric structure of Banach
spaces.

Classically, geometry was studied in low dimensions, usually two or three.
The study of geometrical properties of finite dimensional Banach spaces of
high dimension had a large development during the last decades, while trying
to understand infinite dimensional spaces. Later, the geometry of spaces
of high dimension aroused interest by itself. In this setting one studies
families of objects in different spaces focused on the asymptotic behaviour
of certain quantities. Usually the dependence relies on the the dimension of
the ambient space.

For many applications in asymptotic geometric analysis, convex geome-
try or even optimization it is useful to approximate a given convex body
by another one. For example, the classical Rogers-Shephard inequality
[AAGM15, Theorem 1.5.2] states that, for a convex body K Ă Rn, the
volume of the difference body K ´K is “comparable” with the volume of
K. Precisely, |K ´ K|

1
n ď 4|K|

1
n where | ¨ | stands for the n-dimensional

Lebesgue measure. Rogers and Shephard also showed, with the additional
assumption that K has barycenter at the origin, that the intersection body
K X p´Kq has “large” volume. Namely, |K X p´Kq|

1
n ě 1

2 |K|
1
n . These

inequalities imply that any given body is enclosed by (or contains) a sym-
metric body whose volume is “small” (“large”) enough. In many cases this
allows us to take advantage of the symmetry of the difference body (or the
intersection body) to conclude something about K.

Another interesting example of Milman and Pajor [MP89, Section 3]
shows that

LK ď c inf

#

ˆ

|W |

|K|

˙
1
n

: W is unconditional and contains K

+

, (1)

where LK stands for the isotropic constant of K Ă Rn (see [BGVV14,
Section 2.3.1]) and c ą 0 is an absolute constant. Therefore, having a good

1
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volumetric approximation of K by an unconditional convex body provides
structural geometric information of K.

Perhaps the most notable application of these kind of approximations
can be viewed when studying John/Löwner ellipsoid (maximum/minimum
volume ellipsoid respectively). John proved that, if the Euclidean ball is
the maximal volume ellipsoid inside K, we can decompose the identity
as a linear combination of rank-one operators defined by contact points
[AAGM15, Theorem 2.1.10]. This result was complemented by Ball [Bal92]
who showed that this property characterizes Jonh’s ellipsoid. The distri-
bution of the contact points between a convex body and its maximal vol-
ume ellipsoid was also used by Dvoretzky and Rogers [DR50] to prove that
every infinite dimensional Banach space has a series that converges uncon-
ditionally but not absolutely. It also plays a key role in the study of dis-
tances between bodies, see [TJ89] for a complete treatment on this. We
also refer to [Mat02, Gru07, GPT01, Las92, Las98, Pel83] for many nice
results/applications which involve these extremal ellipsoids.

A natural quantity that relates a given body K with its ellipsoid of max-
imal volume is given by the “standard” volume ratio, that was introduced
by Szarek and Tomczak Jaegermanb in [STJ80]

vrpKq “ inf

#

ˆ

|K|

|E |

˙
1
n

: E is an ellipsoid contained in K

+

. (2)

Using the Brascamp-Lieb inequality, Ball showed that vrpKq is maximal
when K is a simplex . The extreme case, among all the centrally symmetric
convex bodies, is given by the cube (see [AAGM15, Theorem 2.4.8]).

A generalization of the “standard” volume ratio was presented by Gi-
annopoulos and Hartzoulaki [GH02] and also developed by Gordon, Litvak,
Meyer and Pajor [GLMP04]: given two convex bodies K and L in Rn the
volume ratio of the pair pK,Lq is defined as

vrpK,Lq :“ inf

#

ˆ

|K|

|T pLq|

˙
1
n

: T pLq is contained in K

+

, (3)

where the infimum (actually a minimum) is taken over all affine trans-
formations T . In other words, vrpK,Lq measures how well can K be ap-
proximated by an affine image of L. Note that the classic value vrpKq is
just vrpK,Bn

2 q where Bn
2 is the Euclidean unit ball in Rn. It’s easy to see

that the volume ratio is invariant under affine transformations, which means
that it depends only on the affine classes of K and L. This invariant can
already be found in the work of McBeath [Mac51a]. The cubical volume
ratio, vrpBn

8,Kq, was studied by Ball [Bal89] who proved that for every
convex body K Ă Rn,

vrpBn
8,Kq vrpK,Bn

2 q „ vrpBn
8, B

n
2 q.
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It also appears in the work of Babenko [Bab88] (under the name of sup-
porting volume) and also was studied by Pelczynski and Szarek in [PS91].
Actually, a bound for the cubical volume ratio can be already found in
[DR50].

We treat the problem of bounding the simplex volume ratio for a convex
body K. Namely,

SoutpKq :“ vrpS,Kq

where S is a simplex (the convex hull of n`1 affinely independent points on
Rn). Given K Ă Rn we look for simplices containing it with “small” volume.
All this generalizes, for higher dimension, a classical geometrical problem:
given a convex set K Ă R2 finding the minimal area of a triangle containing
it. In [Gro18], Gross proved that for every convex body K Ă R2 there is a
triangle of at most twice the area containing it. For greater dimensions the
problem of finding the exact value of the simplex ratio remains open.

Macbeath in [Mac51a] showed how to construct a simplex that contains
a convex body K Ă Rn such that |S| ď nn|K|, obtainting that SoutpKq ď n.
Chakerian [Cha73, Corollary 5] improved this bound showing that

SoutpKq ď n
n´1
n « n. (4)

The best known estimate so far can be obtained applying a general bound
for volume ratios due to Giannopoulos and Hartzoulaki [GH02],

SoutpKq ĺ
?
n logpnq. (5)

In this work we show the asymptotically sharp bound

SoutpKq ĺ
?
n.

Actually, we prove something stronger (Theorem 2.3.4): given K Ă Rn there
is a simplex enclosing it with the same barycenter such that

ˆ

|S|

|K|

˙
1
n

ĺ
?
n.

We work with a dual version of this problem and prove that, given a body
K Ă Rn, there is a simplex contained in it with the same barycenter such
that

ˆ

|K|

|S|

˙
1
n

ĺ
?
n.

The techniques that we use allow us to obtain a result of probabilistic na-
ture, Theorem 2.4.6, that can be seen as a random algorithm to find such
simplices.
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In order to face the problem for other classes of convex bodies we define
the largest volume ratio of a convex body K as

lvrpKq :“ sup
LĂRn

vrpK,Lq,

where the supremum is taken over all convex bodies L Ă Rn. The bound (5)
can be written as

lvrpKq ĺ
?
n logpnq, (6)

for every convex body K Ă Rn. In many cases the largest volume ratio of
a body can be bounded by the square root of the dimension of the ambi-
ent space. In fact we conjecture that the logarithmic factor in (6) can be
removed. We show this bound for many natural classes of convex bodies.

We study the case where K Ă Rdˆd is the unit ball of the p-Schatten
norm. This norms are generalizations of the classical Hilbert-Schmidt op-
erator norm. We refer to [KMP98, GP07, BCE13, RV16, KPT18] where
many properties of them can be found. These examṕles come from unitary
invariant norms. In Theorem 3.3.6 we prove that if K Ă Rdˆd is the unit
ball of a unitary invariant norm, then

lvrpKq ĺ d.

Another natural class of convex body that we treat are the unit balls of
tensor norms of `np spaces. They have been widely studied since they can be
understood as spaces of multilinear forms or homogeneous polynomials (see
for example [DF92, Din99, Flo97]). We study the case of the injective and
projective norm and their symmetric analogous. Namely, we prove that if
E is any of the spaces

Âm
ε `

n
p ,
Âm,s

εs
`np ,

Âm
π `

n
p or

Âm,s
πs

`np and N “ dimpEq
then

lvrpBEq ĺ
?
N.

Additionally, we show that if K Ă Rn is unconditional, then

lvrpKq ĺ
?
n.

We also treat the problem of finding a lower bound for the volume ratio.
Khrabrov [Khr01], using a construction due to Gluskin [Glu81], proved that
for every convex body K Ă Rn

lvrpKq ľ

c

n

log logpnq
. (7)

To take out the double logarithm in (7) we refine Khrabrov’s techniques.
We prove in Theorem 4.2.9 that for every convex body K Ă Rn

lvrpKq ľ
?
n.
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If we combine this bound with the upper bounds that we previously men-
tioned we see that this is the best possible asymptotic general bound.

In [Rud04] Rudelson studied the diameter of the Banach-Mazur com-
pactum for distances related with projections or sections of convex bodies.
Based in Rudelson’s approach we analyse the problem of estimating the
volume ratio between projections of two bodies in Rn onto subspaces of di-
mension proportional to n. We prove in Theorem 5.1.1 that for every convex
body K Ă Rn and k „ n there is a convex body Z such that

vrpQK,QZq ě d

d

k

log log k
,

for every orthogonal projection Q : Rn Ñ Rn of rank k.

By polarity, we get a dual version of the result: for every convex body
K Ă Rn and k „ n there is a convex body Z such that

vrpZ X E,K X Eq ě d

d

k

log log k
,

for every subspace E Ă Rn of dimension k.

The work is organized in five chapters.

In Chapter 1 we present the notation and some basics definitions in
convex geometry. We also recall some inequalities that involve the volume
of convex bodies that are going to be usefull. Lastly, we introduce some
classical positions (affine images) of convex bodies such as John’s/Löwner’s,
the `-position or the isotropic position. We also present the main properties
of these positions that are of our interest.

In Chapter 2 we face the problem of bounding the outer simplex ratio.
For that we set a dual version of it: for a convex body K, we look for “big”
simplices contained in it. In order to properly establish the correspondence
between this two versions we need to apply the Blaschke-Santaló inequality
[AAGM15, Theorem 1.5.10], that relates the volume of a convex body with
the volume of its polar. For that we need that the simplices verify an
aditional condition: that they share the same barycenter with the convex
body involved.

For proving that vrpK,Sq ĺ
?
n and vrpS,Kq ĺ

?
n, for K,S Ă Rn an

arbitrary body and a simplex respectively, we use a probabilistic method.
The idea is to see that if one randomly picks elements from a specified set,
with positive probability the result belongs to the prescribed class. This is
what allows us to obtain Theroem 2.4.6. We also present a non-probabilistic
version of the same result based on a constructions of Dvoretzky and Rogers
[DR50], that has the disadvantage of requiring an explicit computation of
some contact points. Based on a result of Pivovarov [Piv10] we show a
probabilistic version of this construction.
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Chapter 3 is dedicated to bounding the largest volume ratio for some
natural classes of convex bodies. We first prove some elementary properties
of this invariant and show some examples for which sharp bounds can be ob-
tained. We review Giannopoulos and Hartzoulaki’s proof of the best known
general bound [GH02], which is based on a combination of a very particular
position introduced by Rudelson [Rud00] together with Chevet’s inequality
[AAGM15, Theorem 9.4.1]. We take advantage of specific geometrical prop-
erties of some classes of convex bodies and use the mentioned techniques in
order to see that, for these classes, the largest volume ratio can be bounded
by the square root of the dimension of the ambient space.

In Chapter 4 we prove a lower bound for lvrpKq, improving the best
known bound so far due to Krabrov [Khr01]. We present the definition
of the random polytopes introduced by Gluskin [Glu81] (and also used by

Khrabrov) to prove that lvrpKq ľ
b

n
log logpnq . We make some subtle but

important changes in Khrabrov’s arguments that allows us to prove that
lvrpKq ľ

?
n in case that K Ă Rn has some special geometrical properties.

To extend the bound for every convex body we exploit two significant results.
The first one deals with concentration of mass on isotropic convex bodies
and is due to Paouris [Pao06], while the second one is Klartag’s solution to
the isomorphic slicing problem [Kla06].

In Chapter 5 we study the volume ratio between projections of two con-
vex bodies. Given K Ă Rn and k proportional to n, we prove the existence
of a body Z such that, for any orthogonal projection Q of rank k, the volume
ratio between QK and QZ is “large”. Some technicalities in order to deal
with every projection are overcome using an ε-net argument and a Gaussian
version of the random polytopes.



Chapter 1

Preliminaries

In this chapter we present the background material concerning the theory of
convex bodies and asymptotic geometrical analysis that we are going to use
through the entire work. We introduce some basic definitions from classical
convexity and set some notation. We also state some important volume
inequalities that will play a key role in order to obtain our main results. In
Section 1.3 we discuss particular positions of convex bodies that showed to
be especially useful. For a complete discussion on the subjects treated in
this chapter we refer to [AAGM15, Pis99, BGVV14, TJ89].

1.1 Basics

By a convex body (or just a body) K Ă Rn we mean a compact convex set
with non-empty interior. A body K is centrally symmetric if x P K implies
´x P K. Given a norm } ¨ } on Rn we will write

BX :“ tx P Rn | }x} ď 1u,

the unit ball of the space X :“ pRn, } ¨ }q. Unit balls are, obviously, centrally
symmetric. In the other direction, we can define a norm on Rn associated
to a centrally symmetric body by Minkowski’s functional:

}x}K :“ inftλ ą 0 | x P λKu.

We write XK “ pRn, }¨}Kq and we have that BXK “ K. Hence, the study of
centrally symmetric bodies corresponds to the study of different structures
of Rn as a normed space. After fixing an Euclidean structure on Rn we can
associate, to every convex body K Ă Rn with the origin as an interior point,
its polar body,

K˝ :“ ty P Rn | sup
xPK
xx, yy ď 1u.

7
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We need that the origin is an interior point of K in order for K˝ to be a
bounded set. Note that, by definition, when K is centrally symmetric, K˝

is the unit ball of the dual space X˚K . An important property of polarity is
that it reverses inclusions, namely if L Ă K, K˝ Ă L˝. It also also follows
directly from the definition that, for an invertible linear operator T ,

pT pKqq˝ “ pT´1q˚pK˝q. (1.1)

An important family of convex bodies are the polytopes, the convex hull of
some points v1, . . . , vk, that is, the set

convtv1, . . . , vku :“ t
k
ÿ

i“1

tivi | ti ě 0 and
k
ÿ

i“1

ti “ 1u.

We will write absconvtv1, . . . , vku for the absolute convex hull, namely
convt˘v1, . . . ,˘vku. We can easily compute the polar body of a polytope
as follows.

Example 1.1.1. Let K “ convtv1 . . . vku, then

K˝ “ tx P Rn | xx,
k
ÿ

i“1

tiviy ď 1 for all
k
ÿ

i“1

ti “ 1u

and hence, x P K˝ if and only if xx, viy ď 1 for all 1 ď i ď k. In other words,
K˝ is the intersection of the hyperplanes Pi “ tx P Rn | xx, viy ď 1u.

Along this work we are going to analyse some geometrical parameters
associated to convex bodies in Rn. We are interested in estimating the
asymptotic behaviour of these parameters as functions of the dimension
of the ambient space rather than computing their exact value. For two
sequences of real numbers an and bn we write an ĺ bn when there is a
constant C ą 0 (independent of n) such that an ď Cbn for every n P N. We
write an „ bn if an ĺ bn and bn ĺ an. Probably one of the most famous
asymptotic formula of all is Stirling’s approximation formula of n!. We will
make use of it again and again. It states that:

n! „
?

2πn
´n

e

¯n
. (1.2)

It can be also generalized to approximate the Gamma function,

Γpxq “

ż 8

0
tx´1e´tdx,

as follows

Γpx` 1q „
?

2πx
´x

e

¯x
.

We will focus on volumetrical properties of convex bodies. By the volume
of K Ă Rn we mean its Lebesgue measure that we will denote by |K|.
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Example 1.1.2 (Volume of the p-balls). A direct application of Stirling’s
formula is estimating the asymptotic behaviour of the volumes of the unit
balls of the spaces `np “ pRn, } ¨ }pq that we write as Bn

p . A standard compu-
tation (see for example [Pis99, equation (1.17)]) shows that

|Bn
p | “

´

2Γp1` 1
pq

¯n

Γp1` n
p q

,

which by Stirling’s formula behaves as

|Bn
p |

1
n „ n

´ 1
p .

1.2 Volume inequalities

We now state some inequalities concerning the volume of convex bodies.
The first one is the well known Blaschke-Santaló inequality that bounds the
product between the volume of a convex body and the volume of its po-
lar. This quantity is known as the Mahler product of K and, by equation
(1.1), it is invariant under affine transformations. The next theorem shows
that, in the case of centrally symmetric convex bodies, the Mahler prod-
uct is maximized for ellipsoids. Balschke [Bla17] gave a proof for n “ 3
and Santaló [San49] proved the general case. A simple proof using Steiner
symmetrization was given by Meyer and Pajor in [MP90].

Theorem 1.2.1 (Blaschke-Santaló inequality). Let K Ă Rn be a centrally
symmetric convex body then,

|K||K˝| ď |Bn
2 |

2.

Mahler conjectured that, among all convex bodies with the origin as an
interior point, the simplex minimizes the Mahler product. He proved it for
n “ 2 [Mah39]. The following theorem is a reverse form of the last one, and
shows that an asymptotic version of the Mahler conjecture holds. It was
given by Bourgain and Milman [BM87] and a simplified proof can be found
in [AAGM15, Theorem 8.2.2].

Theorem 1.2.2. Let K Ă Rn be a centrally symmetric convex body then,

p|K||K˝|q
1
n ľ |Bn

2 |
2
n .

The next inequalities are due to Rogers and Shephard [RS57] (also see
[AAGM15, Theorem 1.5.2]). They will allow us to reduce many problems
to the case of centrally symmetric bodies. Given K, the difference body is
defined as the centrally symmetric convex body DpKq “ K ´K. It is the
smallest centrally symmetric body that contains K. On the other hand, the
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biggest centrally symmetric convex body contained in K is KXp´Kq. With
barpKq we mean the barycenter (or centroid) of K that is defined as,

barpKq “
1

|K|

ż

K
x dx “ 0.

The next theorem asserts that, in the case that barpKq “ 0, all three bodies
have comparable volume.

Theorem 1.2.3. Let K Ă Rn a convex body then,

|K ´K| ď

ˆ

2n

n

˙

|K|.

In case that barpKq “ 0 we have that,

|K X p´Kq| ě 2´n|K|.

1.3 Some special positions

We say that K 1 is a position of K if there is an invertible affine transfor-
mation T : Rn Ñ Rn such that T pKq “ K 1. We now present some classical
positions of convex bodies.

1.3.1 John’s and Löwner’s positions

One of the most classical positions of convex bodies are John’s and Löwner’s
positions. A convex body K Ă Rn is said to be in John’s position if the
Euclidean ball is the maximal volume ellipsoid inside K and is said to be
in Löwner’s position if Bn

2 is the minimal volume ellipsoid enclosing K.
Every convex body admits a unique (up to orthogonal transformations)
John’s or Löwner’s position. The existence of such positions derives easily
from a standard compactness argument. According to Busemann [Bus50,
Bus55], Löwner discovered the uniqueness of the minimal volume ellipsoid
but communicated the result orally. John, in [Joh48] extended the Lagrange
multipliers rule to the case where the subsidiary conditions are inequalities
(instead of equations). As a consequence he proved that, when Bn

2 is the
maximal volume ellipsoid inside K we must have

Bn
2 Ă K Ă nBn

2 . (1.3)

He also pointed out that when K is centrally symmetric, n can be replaced
by
?
n, namely,

Bn
2 Ă K Ă

?
nBn

2 . (1.4)



1.3. SOME SPECIAL POSITIONS 11

Actually, John also gave a description of the contact points between K and
Bn

2 when K is in John’s position. By a contact point between Bn
2 and K

we mean a point x, that lies in BBn
2 X BK X BK˝. Notice that, if B2 Ă K

and x P BBn
2 X BK, we must also have that x P BK˝. We write x1 b x2 for

the rank one operator, x1 b x2pyq “ xx1, yyx2. In the case that x has norm
one, xbx is the orthogolan projection on the line generated by x. The next
theorem is due to John and was complemented by Ball [Bal92].

Theorem 1.3.1. Let K Ă Rn be a convex body. The Euclidean ball Bn
2 is

the ellipsoid of maximal volume inside K if and only if Bn
2 Ă K and there

exist contact points pxjq
m
j“1 and positive numbers pcjq

m
j“1 such that

m
ÿ

j“1

cjxj “ 0

and

Id “
m
ÿ

j“1

cjxj b xj . (1.5)

We refer to (1.5) as a decomposition of the identity. It is not hard to
check that any decomposition of the identity must fullfil that

ř

ci “ n.
Notice that, if E “ T pBn

2 q is a centrally symmetric ellipsoid contained in K,
E˝ is an ellipsoid enclosing K˝. And, by equation (1.1),

|E ||E˝| “ |Bn
2 |

2.

Hence, if E is the centrally symmetric ellipsoid of maximal volume inside
K, E˝ must be the minimal volume ellipsoid enclosing K˝. So, if K is in
John’s position, K˝ is Löwner’s position. Since, by definition, the contact
points in both cases are the same, we can also form a decomposition of the
identity with those points if K is in Löwner’s position. As an application of
the decomposition of the identity we present a characterization of the John
position in the case of a simplex.

Example 1.3.2. We say that a n-simplex, the convex hull of n` 1 affinely
independent points, is a regular simplex if all its vertices are equidistant. We
will show that the simplex in Löwner’s position is a regular one. Suppose
that S :“ convtv1, . . . , vn`1u is in Löwner’s position. Notice that, n ` 1 is
the minimum amount of vertices that is needed to form a decomposition
of the identity. Hence, there are positive numbers pcjq

n`1
j“1 such that Id “

řn`1
j“1 cjvj b vj . So, we have that

vk “
n`1
ÿ

j“1

cjxvj , vkyvj “ ckvk `
ÿ

j‰k

cjxvj , vkyvj . (1.6)
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On the other hand, since
řn`1
j“1 cjvj “ 0,

vk “ ´
1

ck

ÿ

j‰k

cjvj . (1.7)

Combining (1.6) and (1.7) we get that,

0 “ pck ´ 1q

¨

˝´
1

ck

ÿ

j‰k

cjvj

˛

‚`
ÿ

j‰k

cjxvj , vkyvj

0 “
ÿ

j‰k

cj

ˆ

xvj , vky ´
ck ´ 1

ck

˙

vj .

Since any choice of n vertices must be linearly independent, we have,

xvj , vky “
ck ´ 1

ck
,

for every 1 ď j, k ď n ` 1. Which implies that all ck are equal, and then
ck “

n
n`1 , and that the angle between all vertices is the same and hence are

all equidistant. The polar of S is a simplex in John’s position with faces
given by Fk “ tx P Rn | xx, vky “ 1u. Its vertices can be computed as

wk “
č

i‰k

Fi.

Hence,

wk “
n

n` 1

n`1
ÿ

i“1

xwk, viyvi “
n

n` 1

ÿ

i‰k

vi ` xwk, vkyvk

“
n

n` 1
p´vk ` xwk, vkyvkq “

n

n` 1
pxwk, vky ´ 1qvk. (1.8)

Then,

xwk, vky “
n

n` 1
pxwk, vky ´ 1qxvk, vky.

So we have,

xwk, vky “ ´n.

By (1.8) we deduce that S˝ “ ´nS.
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S

S˝

Figure 1.1: A regular simplex and its poplar body as in Example 1.3.2

1.3.2 Isotropic position

Another useful position arises from classical mechanics and is called the
isotropic position. A convex body is said to be in isotropic position (or
simply, is isotropic) if it has volume one and satisfies the following two
conditions:

• barpKq “ 0,

•
ż

K
xx, θy2 dx “ L2

K @θ P Sn´1,

where LK is a constant independent of θ, which is called the isotropic con-
stant of K. Notice that, the isotropic position can be understood in terms
of the uniform measure on K. If K is isotropic, it is a probability measure
with mean zero and covariance matrix which is a multiple of the identity.
It is well known that every convex body admits a unique (up to orthogonal
transformations) isotropic position (see for example [BGVV14, Proposition
2.3.3.]). Hence, we can define the isotropic constant of a convex body K
as the isotropic constant of the isotropic affine image of K. The following
proposition shows that LK is always bounded from below. Its proof is quite
simple and can be found, for example, in [AAGM15, Proposition 10.1.8].

Proposition 1.3.3. For every convex body K Ă Rn,

LK ě LBn2 ľ 1.

Its worth mentioning that it is unknown whether the isotropic constant
is bounded from above by an absolute constant. This is maybe one of the
main open questions in the area and has many equivalent formulations. The
origin of this question is the so-called slicing problem (or hyperplane conjec-
ture), which asks if every centered convex body of volume 1 has a hyperplane
section through the origin whose volume is greater than an absolute constant
c ą 0. The hyperplane conjecture appears for the first time in the work of
Bourgain [Bou86], but was stated in this form in an article of Milman and



14 CHAPTER 1. PRELIMINARIES

Pajor [MP89], where the equivalence between many forms of the conjecture

is proved. The best known general upper bound is LK ď cn
1
4 , which was

given by Klartag [Kla06] and improves the earlier estimate LK ď cn
1
4 log n

due to Bourgain [Bou91]. We now state two properties of isotropic bodies
that we are going to use later. The first one is a well-known result of Kan-
nan, Lovász and Simonovits [KLS95, Theorem 4.1.], it asserts that isotropic
bodies contain a “large” unit ball.

Lemma 1.3.4. Let K Ă Rn be an isotropic convex body, then
c

n` 2

n
LKB

n
2 Ă K. (1.9)

The second one is related with a well behaviour of the marginals. Before
stating it we need a definition. Let pΩ,Σ, µq be a probability space and
f : Ω Ñ R a measurable function. We say that f is ψ1 if there is λ ą 0 such
that

ż

Ω
e
|fpωq|
λ dµ ă 8.

In that case the ψ1-norm (or subexponencial norm) is defined as follows,

}f}ψ1 :“ inftλ ą 0 |

ż

Ω
e
|fpωq|
λ dµ ď 2u.

It is worth mentioning that the ψ1 norm is a particular case of an Orlicz-
norm. For more information on this general framework see for example
[AAGM15, Subsection 3.5.2] The next lemma gives a bound for the ψ1 norm
of the marginal of an isotropic body. A proof of it can be found in [BGVV14,
Proposition 3.1.2].

Lemma 1.3.5. There is an absolute constant C ą 0 such that for every
isotropic convex body K Ă Rn and every θ P Sn´1 we have

}x¨, θy}Lψ1 ď CLK .

1.3.3 `-position

Now we introduce another special position that we are going to make use of.
First we need some definitions. Given a centrally symmetric convex body
K the mean width of K is defined as

ωpKq “

ż

Sn´1

}θ}K˝dσpθq,

where σ stands for the normalized Haar’s measure on Sn´1. The Spherical
mean of a norm (actually of any homogeneous function) is related with its
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Gaussian mean. If G is a vector with Gaussian independent coordinates,
G
}G}2

is uniformly distributed on the sphere, moreover }G}2 and G
}G}2

are
independent. Hence, the spherical and Gaussian mean differ by the factor
Ep}G}2q. A standard computation together with Stirling’s formula shows
that,

Ep}G}2q “
?

2Γpn`1
2

q
Γp
n

2
q „

?
n.

Hence, if γn is the standard Gaussian measure on Rn, the following holds

?
n

ż

Sn´1

}θ}K˝dσpθq „

ż

Rn
}x}K˝dγnpxq. (1.10)

Given a convex body K we define,

`pKq :“

ż

Rn
}x}Kdγnpxq.

With this definition, equation (1.10) takes the following form

`pKq „
?
nωpK˝q. (1.11)

The more usual definition of the parameter ` is using the second moment,
namely

ˆ
ż

Rn
}x}2Kdγnpxq

˙
1
2

instead of the first moment. Applying a Kahane-Khinchine type inequality
for seminorms (see for example [TJ89, equation (4.5)]) we can see that

ˆ
ż

Rn
}x}2Kdγnpxq

˙
1
2

„

ż

Rn
}x}Kdγnpxq. (1.12)

Hence, from an asymptotic point of view both definitions of ` are equiva-
lent. We use the first moment to make the relation with the mean width
more transparent. The parameter ` was introduced by Figiel and Tomczak-
Jaegermann in [FTJ79] in the context of operators norm. They proved that
every convex body K Ă Rn admits a position K̄ such that

`pK̄q`pK̄˝q ĺ nRadpK̄q,

where RadpKq stands for the norm of the Rademacher projection Rn :
L2pXKq Ñ L2pXKq. We will omit the proper definitions because we are
not going to make use of them, we refer to [TJ89] and [Pis99] for more in-
formation on the subject. On the other hand, Pisier [Pis79] proved that for
every n-dimensional Banach space X we have,

RadpKq ď c logpdpK,Bn
2 q ` 1q,
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where dpK, `n2 q is the Banach-Mazur distance between K and Bn
2 ,

dpK, `n2 q “ infta ¨ b |
1

a
K Ă TBn

2 Ă bKu,

which, by John’s theorem, is always bounded by
?
n. Putting all this to-

gether we obtain the following theorem.

Theorem 1.3.6. Given a convex body K Ă Rn there is a position of K, K̃
such that `pK̃q`pK̃˝q ĺ n logpn` 1q.

We end this chapter with a classical inequality of Urysohn, which relates
the mean with of a convex body with its volume. Several proofs of it can
be found in [AAGM15, Theorem 1.5.11].

Lemma 1.3.7 (Urysohn). Let K Ă Rn be a convex body. Then,

ωpKq ě

ˆ

|K|

|Bn
2 |

˙
1
n

.

Applying Stirling’s formula, equation (1.11), and Bourgain-Milman in-
equality Theorem 1.2.2, Urysohn’s inequality takes the following form,

`pKq ľ
1

|K|
1
n

. (1.13)



Chapter 2

The simplex ratio

In this chapter we treat the problem of approximating a given convex body
in Rn by an n-dimensional simplex of similar volume. This a generaliza-
tion of an old geometrical question related to finding triangles of minimal
area enclosing a given planar convex set. In Section 2.2 we review the rich
history behind this problem. We deal with two dual versions of it, namely,
approximating a given convex body K Ă Rn by a simplex contained in it
or enclosing it. For this two formulations to be equivalent we need an ad-
ditional property of the simplex: that has the same barycenter as K. We
formulate the problem and prove the equivalence between both versions in
Section 2.3. In Section 2.4 we use the probabilistic method to prove the ex-
istence of simplices which fulfill the desired properties. This gives our main
result, Theorem 2.4.6, which consist on a probabilistic algorithm to find
such simplices. Finally in Section 2.5 we present a non-probabilistic proof
of the problem using a classical construction from Dvoretzky and Rogers
regarding parallelepipeds enclosing convex bodies. While their construction
proves the existence of a parallelepiped with the desired properties, it can
be hard to find it explicitly. We also present a random version of the same
result that allows us to avoid this problem.

2.1 Introduction

By a simplex S Ă Rn we always mean an n-dimensional simplex, the convex
hull of n` 1 affinely independent points. Given a convex body K Ă Rn, we
define the outer simplex ratio of K,

SoutpKq :“ min

ˆ

|S|

|K|

˙1{n

,

where the minimum is taken over all simplices S in Rn containing K. Our
goal is to give an asymptotic bound for the outer simplex ratio of a general

17
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convex body K. First notice that, since all simplices are in the same affine
class, Sout happens to be an affine invariant quantity of K. In fact,

SoutpTKq “ min
TKĂS

ˆ

|S|

|TK|

˙1{n

“ min
TKĂS

ˆ

|T´1pSq|

|K|

˙1{n

“ min
KĂS̃

˜

|S̃|

|K|

¸1{n

.

Let’s start with a few examples to illustrate the problem.

Example 2.1.1 (The minimal volume simplex for the Euclidean ball). Let
K :“ Bn

2 , the Euclidean ball, and S Ą Bn
2 the regular simplex defined in

Example 1.3.2.
Let us see that S is the minimal volume simplex containing K. If not,

then there is a simplex T Ă Rn enclosing the ball with volpT q ă volpSq.
Consider the linear transformation A P GLpnq such that ApSq “ T ; then,
| detpAq| ă 1. Therefore A´1pBn

2 q is an ellipsoid with volume greater than
|Bn

2 | inside S, which contradicts the fact that S is in John’s position.
In order to compute the volume of the simplex it is easier to do it working

in Rn`1 on the hyperplane
ř

i xi “ 1. There the simplex is represented as the
n-dimensional simplex convte1, . . . , en`1u, that contains an n-dimensional
sphere centered in the point p 1

n`1 , . . . ,
1

n`1q and has radius,

r “

›

›

›

›

p
1

n` 1
, . . . ,

1

n` 1
q ´ p

1

n
, . . . ,

1

n
, 0q

›

›

›

›

“
1

a

npn` 1q
. (2.1)

Notice that, by this identification, S is a face of the simplex ∆ :“
convt0, e1, . . . , en`1u that has volume 1

pn`1q! . If we think the simplex as
a cone with base S, the volume can be also computed as

|∆| “
1

n` 1
|S|n}p

1

n` 1
, . . . ,

1

n` 1
q} “

1

n` 1
|S|n

1
?
n` 1

.

We now rescale by the radius computed in equation (2.1) and obtain:

|S| “
pn` 1q

n`1
2 n

n
2

n!
. (2.2)

On the other hand, the volume of the unit ball was computed in Example
1.1.2,

|K| “
π
n
2

Γpn2 ` 1q
.

Using Stirling formula (equation (1.2)) we therefore get

ˆ

|S|

|K|

˙
1
n

„
?
n.

We conclude that SoutpBn
2 q „

?
n.
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Figure 2.1: The simplex of minimal volume enclosing the Euclidean ball is
the regular simplex circumscribing it.

Example 2.1.2 (The cube). Let K be the cube r0, 1sn Ă Rn and consider
the simplex S :“ convt0, ne1, . . . , nenu. We have that K Ă S and

ˆ

|S|

|K|

˙
1
n

„ 1. (2.3)

In fact, since the sum of the coordinates of all points that lie in the cube
is less than or equal to n, we have that K Ă S. The volume of the cube is
1, and the volume of the simplex is det |ne1,...,nen|

n! “ nn

n! . Applying Stirling
formula,

ˆ

|S|

|K|

˙
1
n

“

ˆ

nn

n!

˙
1
n

„ 1.

Since SoutpKq ě 1 always holds, we have that SoutpKq „ 1.

Figure 2.2: The simplex convt0, 3e1, 3e2, 3e3u enclosing the cube r0, 1s3 Ă R3

as in Example 2.1.2.
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2.2 Historical background

Before stating our main results we are going to review the history behind this
problem. For the Euclidean plane, i.e. n “ 2, it was completely solved by
Gross [Gro18] (and generalized in different ways by W. Kuperberg [Kup83]):
every convex body K Ă R2 can be inscribed in a triangle of area at most
2|K| (see Figure 2.3). This ratio corresponds (exclusively) to the case that K
is a parallelogram. The measure of the tetrahedron (not necessarily regular)
of least volume enclosing a convex body K Ă R3 is in general unknown.
If K Ă R3 is a parallelepiped of volume one, then the minimal volume
tetrahedron containing it has volume 9{2. It is an open question whether
this is the worst possible fit for the general case. To our knowledge, there
are not even conjectured bounds for greater dimensions (n ě 4).

Figure 2.3: Triangle of minimal area enclosing the unit square

An n-dimensional bound for the simplex ratio was given by Macbeath
in [Mac51a] where he constructs a simplex enclosing a convex body K such
that |S| ď nn|K|, what implies the bound SoutpKq ď n. This bound was im-
proved (but with the same asymptotic order) in the seventies by Chakerian
[Cha73, Corollary 5]. The same estimate was recently rediscovered in 2014
by Kanazawa [Kan14, Theorem 1] using different arguments. In particular,
both authors showed that

SoutpKq ď n
n´1
n « n. (2.4)

Note that when n “ 2 this is just Gross’ bound.
It is possible to improve the previous bound applying a general inequality

for volume ratios due to Giannopoulos and Hartzoulaki [GH02], where they
reduced the problem to the centrally symmetric case and applied Chevet’s
inequality (Theorem 3.3.2) for a position of the bodies related with the `-
position (Theorem 1.3.6). We will discuss their construction more deeply in
Chapter 3. As a consequence of their results we have

SoutpKq ĺ
?
n logpnq. (2.5)

Up to our knowledge, this is the best known bound so far; see also the
recent work of Paouris and Pivovarov [PP17, Corollary 5.4], regarding a
randomized version of Urysohn inequality, where the same bound is given
but with a different method.
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By duality, bounding the outer simplex ratio is related with finding sim-
plices of large volume inside a convex body with the same barycenter. The
search of simplices of large volume contained in a convex body has an exten-
sive and interesting history in geometry. For instance, the study of the max-
imum area of triangles in planar convex bodies was undertaken by Blaschke
[Bla17] in the early 20th century. Sas [Sas39] and Macbeath [Mac51b] also
considered the problem of approximating a given convex body by inscribed
polytopes. McKinney [McK74] studied certain properties of those simplices
of maximum volume inside a centrally symmetric convex body. The survey
[HKL96] also deals with simplices of large volume in cubes.

A classical question regarding simplices inside convex bodies was stated
by Sylvester [Syl65]: Given 4 points uniformly distributed on a planar convex
body K, what is the probabilty of its convex hull being a simplex? This
is directly related to estimating the expected volume of a random simplex
with vertices taken uniformly on a convex body. Given K Ă Rn of volume
1, set

SppKq :“

ˆ
ż

K
. . .

ż

K
| convtx1 . . . xn`1u|

pdx1 . . . dxn`1

˙
1
p

. (2.6)

The so-called Sylvester problem is to describe the affine classes of convex
bodies for which SppKq is maximized or minimized. For n “ 2 it was
settled by Blashke [Bla17], the minimizers and maximizers are ellipsoids
and simplices respectively.

Groemer [Gro73] proved that SppKq ě SppB
n
2 q (Blashke-Groemer in-

equality) holds for every convex body K and equality is attained if and
only if K is an ellipsoid. In the opposite direction the problem is open for
n ě 3. It is conjectured that the maximizer is the simplex, this is known
as the simplex conjecture. Milman and Pajor [MP89] established a relation
between S1pKq and the isotropic constant of K, they proved that

S1pKq „
Lk
?
n
. (2.7)

As consequence of this relation we have that the simplex conjecture implies
an affirmative answer to the slicing problem.

Busemann [Bus53] introduced the following variant of Sylvester’s func-
tional,

BppKq :“

ˆ
ż

K
. . .

ż

K
| convt0, x1, . . . , xnu|

pdx1 . . . dxn

˙
1
p

. (2.8)

Again, BppKq is minimal among all convex bodies when K is an ellipsoid.
That leads to the next inequality, known as Busemann’s random simplex
inequality [Bus53].

B1pKq ě

ˆ

|Bn´1
2 |

pn` 1q|Bn
2 |

˙n

|K|n`1 ě

ˆ

c
?
n

˙n

|K|n`1, (2.9)
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with c ą 0 an absolute constant.

2.3 Inner simplex ratio and duality

In order to obtain a general bound for SoutpKq we are going to approach a
dual version of the problem: finding simplices of large volume contained in
K.

Given a convex body K Ă Rn we define the inner simplex ratio of K as

SinnpKq :“ min

ˆ

|K|

|S|

˙1{n

,

where the minimum is taken over all simplices S Ă K.

Example 2.3.1. Let K :“ Bn
2 and S the regular simplex in Löwner’s posi-

tion. The same argument that was used in Example 2.1.1 shows that S is
the maximal volume simplex inside K. Since S can be obtained stretching
the regular simplex that enclose the ball by a factor of n, from equation (2.2)
we have that,

|S| “
pn` 1q

n`1
2 n

n
2

n!nn
„

1

n
, (2.10)

and hence SinnpBn
2 q „

?
n.

There are many ways of showing that for every body K, SinnpKq ĺ
?
n.

It can be found in the work of Macbeath in [Mac51a]. It was also showed
by Giannopoulos, Perissinaki and Tsolomitis in [GPT01]. We will show how
to prove it using the classic Dvoretzky-Rogers, Lemma that asserts that
it is possible to extract from a decomposition of the identity an “almost”
orthogonal basis.

Lemma 2.3.2 (Dvoretzky-Rogers). Let w1, . . . , wm P S
n´1 and c1, . . . , cm

such that Id “
ř

ciwi b wi, then there is a subset of vectors tv1, . . . , vnu Ă

tw1, . . . , wmu such that }Pkpvk`1q}2 ě
`

n´k
n

˘

1
2 for 1 ď k ď n´ 1, where Pk

stands for the orthogonal projection on spantv1, . . . , vku
K.

Proof. First notice that for a linear map T : Rn Ñ Rn there must be wi
such that xwi, Twiy ě

trpT q
n . In fact,

trpT q

n
“

1

n

n
ÿ

i“1

cixT,wi b wiy “
1

n

n
ÿ

i“1

cixTwi, wiy,

and for some vector wi, xTwi, wiy must be greater than the arithmetic mean.
The proof goes by induction. Set v1 “ w1 and suppose we already have
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v1 . . . vk. If Pk is the orthogonal projection on spantv1 . . . vku
K, trpPkq “

n´ k. Take wi such that xwi, Pkwiy ě
n´k
n , we have

}Pkpwiq}2 “ xwi, Pkwiy
1
2 ě

ˆ

n´ k

n

˙
1
2

,

which concludes the proof.

Now, consider tv1, . . . , vnu given by Dvoretzky-Rogers lemma and define
the simplex S :“ convt0, v1, . . . , vnu. We can think of this simplex as a cone
with base convt0, v1, . . . , vn´1u. Its volume can be computed as

1

n
}Pn´1pvnq}2| convt0, v1, . . . , vn´1u|n´1.

Since convt0, v1, . . . , vn´1u is itself a cone with base convt0, v1, . . . , vn´2u,
we iterate the argument and get

|S| “
1

n!
}Pn´1pvnq}2}Pn´2pvn´1q}2 . . . }v1}2 ě

a

pn´ 1q!

n!
?
n!

„
1

n
. (2.11)

As a consequence of this we have the following proposition regarding the
inner simplex ratio of a general convex body.

Proposition 2.3.3. Given a convex body K Ă Rn there is a simplex S Ă K

such that
´

|K|
|S|

¯
1
n

ĺ
?
n.

Proof. Assume that K is in Löwner’s position and consider a decomposition
of the identity formed by contact points between K and Bn

2 as in Theo-
rem 1.3.1. Extract from the contact points the vectors given by Lemma 2.3.2
and consider the simplex S :“ convt0, v1, . . . , vnu. Since K Ă Bn

2 we have

ˆ

|K|

|S|

˙
1
n

ď

ˆ

|Bn
2 |

|S|

˙
1
n

.

The result follows from equation (2.11) and Stirling formula.

A bound of the same asymptotic order can be obtained considering ran-
dom simplices formed with vertices uniformly distributed inside K. Apply-
ing equations (2.8) or (2.7) we can prove the existence of simplices inside K
with volume of the same order as the one showed before.

In order to deduce a bound for the outer ratio from the inner one it is
necessary to require an additional property of the simplex, that it shares
the same barycenter as the given convex body. The main reason for this is
that we make use of polarity to pass from one to another. Given a convex
body K Ă Rn and a simplex S Ă K we have that S˝ Ą K˝, and we need the
Blaschke-Santaló inequality (Theorem 1.2.1) in order to relate the volume
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of S and S˝. For a non centrally symmetric convex body L, the Blaschke-
Santaló inequality takes the following form:

min
xPL

|L||pL´ xq˝| ď |Bn
2 |

2.

The point where the minimun is attained is called the Santaló point of L.
Hence, we can only relate the volume of L with the volume of the polar body
of a translation of L. So, in order for the inclusion between S and K to hold,
we would need to move K as well, but in that case we loose control of the
volume of the polar body of K. It is known, see for example [Sch14, equation
10.23], that if barpL0q “ 0 then the Santaló point of L is at the origin, and
that is the case of a centered simplex, as we will see in Lemma 2.3.7. This
induces a stronger version of the aforementioned problem. Given a convex
body K Ă Rn, we define

Sout˝ pKq :“ min

ˆ

|S|

|K|

˙
1
n

,

where the minimum is taken over all simplices S containing K and having
the same barycenter.

And similarly,

Sinn˝ pKq :“ min

ˆ

|S|

|K|

˙
1
n

,

where the minimum is taken over all simplices S included in K and having
the same barycenter. The problem now is to obtain general bounds for both,
Sout˝ pKq and Sinn˝ pKq.

Theorem 2.3.4. Given a convex body K Ă Rn there is a simplex S with

the same barycenter such that K Ă S and
´

|S|
|K|

¯
1
n

ĺ
?
n.

Theorem 2.3.5 (Dual version). Given a convex body K Ă Rn there is a

simplex S with the same barycenter such that S Ă K and
´

|K|
|S|

¯
1
n

ĺ
?
n.

Before proving them we will show how to deduce Theorem 2.3.4 from
Theorem 2.3.5. We start with two lemmas regarding the barycenter of a
simplex and its polar body.

Lemma 2.3.6. The barycenter of a simplex S “ convtv1, . . . , vn`1u is given
by the arithmetic mean of it vertices,

barpSq “
1

n` 1

n`1
ÿ

i“1

vi.
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Proof. First observe that if f : Rn Ñ Rn is an affine transformation, fpxq “
Ax`v, and K Ă Rn is a convex body we have that fpbarpKqq “ barpfpKqq,
in fact,

barpfpKqqi “
1

|fpKq|

ż

fpKq
xidx1 . . . dxn

“
1

detpAq|K|

ż

K
fpxqi detpAqdx1 . . . dxn “ barpfpKqq.

Hence, since any simplex is the affine image of ∆ “ convt0, e1, . . . , enu we
only need to prove the assertion for this simplex. Notice that ∆ is invariant
under permutation of coordinates and so must be its barycenter. So, we
have that barp∆q “ pb, . . . , bq and the only point like this that lies in ∆ is
p 1
n`1 , . . . ,

1
n`1q.

Lemma 2.3.7. Let S Ă Rn be a simplex with barycenter at origin, then S˝

is also a centered simplex.

Proof. Let ∆0 :“ convte1, . . . , en,´
ř

eiu. From the previous lemma we
know that the barycenter of a simplex convtv0, . . . , vnu is given by the arith-
metic mean of the vertices,

barpconvtv0, . . . , vnuq “
1

pn` 1q

n
ÿ

i“0

vi. (2.12)

We know that there is an affine transformation T such that S “ T∆0.
Since S and ∆0 have barycenter at the origin, T must be linear. Since
S˝ “ pT ˚q´1∆˝

0, to show that barpS˝q “ 0 is enough to do it for ∆˝
0.

The polar body of a polytope is the intersection of the hyperplanes de-
termined by its vertices (Example 1.1.1), we have that ∆˝

0 “
Ş

tx : xx, eiy ď
1u

Ş

tx : xx,´
ř

eiy ď 1u and its n ` 1 vertices are given by all possible
intersection of n of these hyperplanes. So, ∆0 “ tv1, . . . , vn`1u with

vn`1 “

n
č

i“1

tx : xx, eiy “ 1u “
n
ÿ

i“1

ei

and

vk “
č

i‰k

tx : xx, eiy “ 1u
č

tx : xx,´
n
ÿ

i“1

eiy “ 1u “ p1, 1, . . . ,´n, . . . , 1q.

The result follows from the fact that
řn`1
i“1 vi “ 0.

Proof of Theorem 2.3.4 assuming Theorem 2.3.5. Let K Ă Rn be an arbi-
trary convex set with barycenter at the origin. By the Rogers-Shephard
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inequality, Theorem 1.2.3, the centrally symmetric difference body DpKq “
K ´K contains K and fulfills

ˆ

|DpKq|

|K|

˙1{n

ď 4. (2.13)

By Theorem 2.3.5 applied to the body DpKq˝ there is a simplex with
barycenter at the origin T Ă DpKq˝ such that

ˆ

|DpKq˝|

|T |

˙
1
n

ĺ
?
n. (2.14)

Consider S the simplex T ˝. By Lemma 2.3.7, S has also barycenter at
the origin and obviously S Ą DpKq. Now,

|S|

|DpKq|
“

|S||T |

|DpKq||DpKq˝|
¨
|DpKq|˝

|T |
. (2.15)

By Blaschke Santaló, Bourgain-Milman inequalities and Stirling formula
we have

ˆ

|S||T |

|DpKq||DpKq˝|

˙1{n

ĺ 1. (2.16)

The result now follows immediately form equations (2.13), (2.14), (2.15),
(2.16) and the fact that DpKq Ą K and hence S Ą K.

Remark 2.3.8. In the previous proof we pass through the difference body
of K because of the polar body of a centered body is not necessary centered
(see [MSW10]).

Examples 2.1.1 and 2.3.1 show that the bounds obtained are asymptot-
ically sharp.

2.4 A probabilistic approach

The probabilistic method is a standard method for proving the existence
of a specified kind of mathematical object. The philosophy is to show that
if one randomly chooses objects from a fixed class, the probability that the
result is of the prescribed type is positive. In this section we use this method
to give a proof of a stronger version of Theorem 2.3.5. For this we need two
propositions that essentially state that, with very high probability, certain
random simplices have “good properties”.

Suppose K Ă Rn is an isotropic convex body and we randomly choose
X1, . . . , Xn inK. The following statement asserts that typically the barycen-
ter of the random simplex convt0, X1, . . . , Xnu has “small” norm.
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Proposition 2.4.1. There is an absolute constant c1 ą 0 such that for every
isotropic convex body K Ă Rn and tXiu

n
i“1 independent random vectors

uniformly distributed in K then

P t}barpT q} ď c1LKu ą 1´
1

2
e´n, (2.17)

where T is the random simplex convt0, X1, . . . , Xnu.

Our arguments to prove this proposition are based on the proofs of
[AG08, Theorem 3.1.] and [KK09, Theorem 1.1.].

We need to state a technical lemma. Given a meric space M , a δ-net
for M is a set N Ă M such that for every x P M there is η P N such that
dpx, ηq ď δ.

Lemma 2.4.2. Let δ ą 0 and n P N. There is a δ-net N for Sn´1 with
cardinality # pN q ď p1` 2

δ q
n.

Proof. The proof follows by a standard volumetric argument. Let txiu be a
maximal δ-separated set in Sn´1. Then txiu

N
i“1 is a δ-net for Sn´1. Since

the sets xi `
1
2δB

n
2 are disjoint and are all included in Bn

2 `
δ
2B

n
2 , taking

volume we get that

#pN qpδ
2
qn|Bn

2 | ď p1`
δ

2
qn|Bn

2 |, (2.18)

which gives the desired bound.

We also need a classical inequality due to Bernstein about sums of in-
dependent random variables (see, for example [AAGM15, Theorem 3.5.16])
together with the “good behavior” of the marginals x¨, θy, for any direction
θ P Sn´1 (Lemma 1.3.5).

Theorem 2.4.3 (Bernstein inequality). Let tYiu
n
i“1 be a sequence of random

variables with mean 0 on some probability space. Assume that Yi belong to
Lψ1 and that }Yi}Lψ1 ď M for all i “ 1, . . . , n. Let σ2 “ 1

n

řn
i“1 }Yi}

2
Lψ1

.

Then, for all t ą 0,

P

#ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Yi

ˇ

ˇ

ˇ

ˇ

ˇ

ą tn

+

ď e´D nmint t
2

σ2
, t
M
u, (2.19)

for some absolute constant D ą 0.

We are now ready to give a proof of Proposition 2.4.1.

Proof of Proposition 2.4.1. Let tXiu
n
i“1 be independent random vectors uni-

formly distributed on K and let θ be a fixed direction in Sn´1.
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By combining Lemma 1.3.5 and Theorem 2.4.3 for the random variables
Yj :“ xXj , θy we have, for all t ą CLK ,

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, θy

ˇ

ˇ

ˇ

ˇ

ˇ

ą tn

+

ď e
´n t D

C LK .

Let N be a 1
2 -net on the sphere of cardinality less than or equal to 5n

given by Lemma 2.4.2. Then

P

#ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, θy

ˇ

ˇ

ˇ

ˇ

ˇ

ą tn for some θ P N

+

ď e
´np t D

C LK
´logp5qq

,

and hence

P

#ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, θy

ˇ

ˇ

ˇ

ˇ

ˇ

ď tn for every θ P N

+

ě 1´ e
´np t D

C LK
´logp5qq

.

Every vector ϑ P Sn´1 can be written in the form ϑ “
ř

j“1 δjxj , with

xj P N and 0 ď δj ď 21´j . In fact, start with x1 P N such that }ϑ´x1}2 “

δ1 ď 1. Then, ϑ´x1
δ1

P Sn´1 and hence there is x2 P N with }ϑ´x1δ1
´ x2}2 “

δ2 ď
1
2 . So, we have

}ϑ´ x1 ´ δ1x2}2 ď δ1δ2.

Inductively we find x1, . . . , xn P N and δ1, . . . , δn such that
›

›

›

›

›

ϑ´
n
ÿ

i“1

˜

i
ź

j“1

δj

¸

xi

›

›

›

›

›

2

ď 2j´1.

Then ϑ “
ř8
i“1p

śi
j“1 δjqxi. Observe that

č

θPN

#ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, θy

ˇ

ˇ

ˇ

ˇ

ˇ

ď tn

+

Ă

#›

›

›

›

›

n
ÿ

i“1

Xi

›

›

›

›

›

2

ď 2tn

+

“

#

max
ϑPSn´1

ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, ϑy

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2tn

+

.

Indeed, let ϑ be an arbitrary unit vector and suppose that |x
řn
i“1Xi, θy| ď tn

for every θ P N , then

ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, ϑy

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi,
8
ÿ

j“1

δjθjy

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

j“1

δj

ˇ

ˇ

ˇ

ˇ

ˇ

x

n
ÿ

i“1

Xi, θjy

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2tn.

Thus, for every t ą CLK we have

P

#›

›

›

›

›

n
ÿ

i“1

Xi

›

›

›

›

›

2

ď 2tn

+

ě 1´ e
´np t D

C LK
´logp5qq

.
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The result now follows by setting t :“ c1pn`1qLK
2n , for c1 ą 0 sufficiently

large.

The second proposition we need ensures that, typically, the random sim-
plex convt0, X1, . . . , Xnu has “large volume”.

Proposition 2.4.4. There is an absolute constant c2 ą 0 such that for every
isotropic convex body K Ă Rn and tXiu

n
i“1 independent random vectors

uniformly distributed in K then

P
"

|convt0, X1 . . . , Xnu| ě
cn2L

n
K

n
n
2

*

ą 1´
1

2
e´n. (2.20)

A proof of it can be found essentially in the work of Pivovarov [Piv10,
Proposition 1]. We include the details for completeness.

Lemma 2.4.5. [Piv10, Lemma 2] Let K Ă Rn be an isotropic convex body
and X be a random vector uniformly distributed on K. Let E Ă Rn be a
k-dimensional subspace and PE the orthogonal projection onto E. Then the
random variable

Y :“
}PEpXq}2
LK
?
k

satisfies

E |Y |´
1
2 ď C 1,

where C 1 ą 0 is an absolute constant.

Proof of Proposition 2.4.4. Let A : Rn Ñ Rn be the linear transformation
mapping the canonical basis teiu

n
i“1 to tXiu

n
i“1. In this case,

convt0, X1, . . . , Xnu “ A pconvt0, e1, . . . , enuq

and so we have

| convt0, X1, . . . , Xnu| “
|detpAq|

n!
. (2.21)

Set Vk :“ spantX1, . . . , Xku and Yk “
}P
Vk´1

KXk}2

LK
?
n´k`1

. By Lemma 2.4.5 if

X1, . . . , Xk´1 are fixed we have Er|Yk|´
1
2 s ď C 1.

Computing the volume of convt0, X1, . . . , Xnu as in equation (2.11),

|detpAq| “ }X1}2}PV1KpX2q
}2 . . . }PVn´1

KpXnq
}2 (2.22)

and applying Fubbini theorem iteratively we obtain

Er
n
ź

i

Y
´ 1

2
k s ď pC 1qn. (2.23)
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Let α ą 0 be a constant to be determined. Then by the Markov inequality
and equation (2.23) we have

Pp|detpAq| ă αnLnK
?
n!q “ Pp

n
ź

i

Yk ă αnq

“ Pp
n
ź

i

Y
´n

2
k ą α´

n
2 q

ď Er
n
ź

i

Y
´ 1

2
k sα

n
2 .

Setting α “ peC 1q´2 we obtain

Pp| convt0, X1, . . . , Xnu| ă
αnLnK?
n!
q ď

1

2
e´n.

The result follows by applying Stirling formula.

The next theorem is a stronger version of Theorem 2.3.5. If the convex
body K is in isotropic position, it gives a probabilistic method to find sim-
plices inside K (having barycenter at the origin) with volume large enough.
We believe this result is interesting in its own right. Here Sn0 stands for the
set of centered simplices in Rn.

Theorem 2.4.6. There exists a function fn : Rn ˆ ¨ ¨ ¨ ˆ Rn
looooooomooooooon

n

Ñ Sn0 such that

for every isotropic convex body K Ă Rn and X1, . . . , Xn independent random
vectors uniformly distributed on K, with probability greater than 1´ e´n we
have that fnpX1, . . . , Xnq is a simplex with barycenter at the origin contained
in K such that

|fnpX1, . . . , Xnq| ě
cnLnK
nn{2

, (2.24)

where c ą 0 is an absolute constant.

We base the following arguments on the recent paper of Naszódi [Nas16]
and with Propositions 2.4.1 and 2.4.4 at hand, we can now give a proof of
Theorem 2.4.6.

Proof of Theorem 2.4.6. Let K Ă Rn be an isotropic convex body and
X1, . . . , Xn be independent random vectors uniformly distributed on K.
Denote by T the simplex convt0, X1, . . . , Xnu and by u its barycenter; i.e.,
u “ 1

n`1

řn
i“1Xi. By Proposition 2.4.1 there is an absolute constant c1 ą 0

such that

P t}u}2 ď c1LKu ą 1´
1

2
e´n.
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K

barpT q

w

T

S “ ϕpT q

0

Figure 2.4: Construction involved in the proof of Theorem 2.4.6.

On the other hand, by Proposition 2.4.4, we know that there is an ab-
solute constant c2 ą 0 such that

P
"

|T | ě
cn2L

n
K

n
n
2

*

ą 1´
1

2
e´n.

By the result of Kannan, Lovász and Simonovits, Lemma 1.3.4, we have
that

c

n` 2

n
LKB

n
2 Ă K

Therefore, the vector w :“ ´ 1
c1
u belongs to K with probability greater than

1´ 1
2e
´n.

It is easy to check that if we apply the homothetic transformation with
center w and ratio

λ “
}w}

}w ´ u}
“

}w}

}w} ` }u}
“

1

1` c1
ą 0

to the simplex T , we obtain another simplex S with barycenter at the origin
(see the Figure 2.4) such that

|S| ě λn|T | ě λn ¨
cn2L

n
K

n
n
2

.
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Denote by X̄ :“ 1
n`1

řn
i“1Xi. Therefore, the function fn : Rn ˆ ¨ ¨ ¨ ˆ Rn

looooooomooooooon

n

Ñ

Sn0 we are looking for can be defined by

fnpX1, . . . , Xnq :“ ϕpconvt0, X1, . . . , Xnuq

“
1

1` c1
convt´X̄,X1 ´ X̄, . . . , Xn ´ X̄u.

This concludes the proof.

We can deduce two corollaries from Theorem 2.4.6 that are slight variants
of Theorems 2.3.5 and 2.3.4. The first one is a direct aplication of the
theorem.

Corollary 2.4.7. Let K Ă Rn, then

Sinn˝ pKq ĺ

?
n

LK
. (2.25)

The proof of the second one requires the same use of polarity as in the
deduction of Theorem 2.3.4 from 2.3.5. That is the reason of the presence
of LDpKq˝ instead of LK˝ .

Corollary 2.4.8. Let K Ă Rn, then

Sout˝ pKq ĺ c

?
n

LDpKq˝
. (2.26)

2.5 The case of the cube and Dvoretzky-Rogers
parallelepiped

As mentioned, for n “ 2 the cube has the largest volume ratio (with respect
to the simplex of minimal volume containing it); for n “ 3 the same is
conjectured. One should expect that a similar phenomenon occurs in high
dimensions but, as we have seen in Example 2.1.2, the volume ratio of the
cube is uniformly bounded. Moreover, we will show that the simplex can be
taken with the same barycenter as the cube.

Proposition 2.5.1. Let K :“ r´1
2 ,

1
2 s
n the volume one centered cube. Then

Sout˝ pKq „ 1.

Proof. To construct the adequate simplex we need to stretch a little bit the
one involved in Example 2.1.2 in order to center it. Denote by 1 the vector
in Rn defined as

řn
j“1 ej . Consider the simplex

S :“ convt´
n

2
1, ne1 ´

1

2
1, ne2 ´

1

2
1, . . . , nen ´

1

2
1u.
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´3
21

´1
21

1
21

Figure 2.5: The simplex convt´3
21, 3e1 ´

1
21, 3e2 ´

1
21, 3e3 ´

1
21u enclosing

the cube r´1
2 ,

1
2 s

3 Ă R3 as in Proposition 2.5.1.

Since K is centrally symmetric, barpKq “ 0. Computing the mean of
the vertices (Lemma 2.3.6) we see that the same holds for barpSq. Observe
also that the cube r´1

2 ,
1
2 s
n is included in the simplex T :“ convt´1

21, ne1´
1
21, ne2´

1
21, . . . , nen´

1
21u. Indeed, all the points that lie in the cube have

coordinates greater than or equal to ´1
2 and their sum is less than or equal

to n
2 . It remains to see that the point ´1

21 belongs to S, but ´1
21 is exactly

tp´n
2 q1`p1´ tq

1
21 for t “ 2

n`1 . An easy computation of a determinant and

Stirling formula proves that the volume of S is exactly nnpn`1q
2n! „ 1.

We are now going to prove in a non-probabilistic way Theorem 2.3.4.
The argument goes as follows: first use Theorem 2.3.2 (see also [PS91]) in
the same way that in [DR50] to prove that every convex body K can be
enclosed by a parallelepiped of adequate volume and then we make use of
the simplex ratio for the cube to conclude the desired bound.

Proof of Theorem 2.3.5. Again, applying the Rogers-Shephard inequality,
Theorem 1.2.3, we can suppose without loss of generality that K is cen-
trally symmetric. Suppose also that K is in John’s position and, as in the
proof of Proposition 2.3.3, take the contacts points tv1, . . . , vnu given by
Theorem 2.3.2. Let P be the parallelepiped

P :“
n
č

i“1

tx P Rn : |xx, viy| ď 1u.

Note that for all 1 ď i ď n, tx P Rn : |xx, viy| “ 1u is a support hyperplane
of K and hence, P Ą K. The volume of P is given by |P | “ 2n

det|v1,...,vn|
.

Computing the determinant as in equations (2.22) and (2.11) we have that

|P |
1
n „ 1. Using the fact that Bn

2 Ă K we get

ˆ

|P |

|K|

˙
1
n

ď

ˆ

|P |

|Bn
2 |

˙
1
n

ĺ
?
n. (2.27)
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The result now follows combining equation (2.27) and the bound given
in Proposition 2.5.1 for the simplex containing the parallelepiped P (with,
of course, the fact that the volume ratio is an affine invariant).

Comparing the result obtained with this technique with (2.25) and (2.26),
one should note that the isotropic constant is missing (maybe in case the
isotropic constant conjecture is false, (2.25) or (2.25) could give better esti-
mates for certain bodies).

2.5.1 Random Dvoretzy-Rogers Parallelepiped

Observe that, in general, understanding how the parallelepiped P in equa-
tion (2.27) looks like seems difficult (its construction depends on certain
contact points when L is in John’s position, which are not easy to find ex-
plicitly), thus Theorem 2.4.6 seems much stronger since it provides a random
algorithm that works with high probability.

We therefore state the following novel probabilistic construction of the
Dvoretzky-Rogers’ parallelepiped, which can be derived from a result of
Pivovarov.

Theorem 2.5.2. Let L Ă Rn be a centrally symmetric convex body such that
L˝ is in isotropic position and consider the random matrix T :“

řn
j“1Xj b

ej, where X1, . . . , Xn are independently chosen accordingly to the uniform
measure in the isotropic body L˝. With probability greater than or equal to
1´ e´n, the parallelepiped P “ T´1pBn

8q contains L and

ˆ

|P |

|L|

˙
1
n

ĺ

?
n

LL˝
.

Proof. First observe that |cot0, X1, . . . , Xnu| “
detp

řn
i“1Xibeiq
n! and hence

Lemma 2.4.5 asserts that

P

#

| det
`

n
ÿ

j“1

Xj b ej
˘

|1{n ě c
?
nLL˝

+

ą 1´ e´n, (2.28)

for some absolute constant c ą 0.
On the other hand since |xXi, yy| ď 1 for all y P L and 1 ď i ď n we

have that }T : XL Ñ `n8} ď 1, where T :“
řn
j“1Xj b ej .

Thus, T pLq Ă Bn
8, or equivalently L Ă T´1pBn

8q :“ P and the ratio

ˆ

|P |

|L|

˙
1
n

“
|Bn
8|

1
n

| detT |
1
n |L|

1
n

. (2.29)

Therefore, by equations (2.29) and (2.28) and taking into account that

|L|
1
n „ 1

n (which comes from an application of the Blaschke-Santaló/Bourgain-
Milman inequality, since |L˝| “ 1) we have, with probability greater than or
equal to 1´ e´n,
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ˆ

|P |

|L|

˙
1
n

ď c

?
n

LL˝
, (2.30)

which concludes the proof.
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Chapter 3

General bounds

In this chapter we discuss the problem of approximating a convex body by
another one in a more general setting. We define the volume ratio of a pair of
convex bodies, that measures how well can one of them be approximated by
an affine image of the other. In Section 3.1 we present the basic definitions
and elementary properties of this quantity. We also define the largest volume
ratio of a convex body and show the best known bound so far. In Section 3.2
we present a series of examples for which this bound can be improved. In
Section 3.3 we introduce some stochastic tools that allow us to extend our
result to some natural classes of convex bodies such as unit balls of unitary
invariant norms and tensor products of `p-spaces.

3.1 General volume ratio

We will discuss a natural generalization of the problems treated in the previ-
ous chapter: replacing the simplex by another affine class of convex bodies.
For K,L Ă Rn we ask whether L can be enclosed by an affine image of K
of similar volume. This kind of approximation was studied by MacBeath
[Mac51a] in the context of modified Banach-Mazur distances. We will work
with the following definition introduced by Giannopoulos and Hartzoulaki
[GH02] and also studied by Gordon, Litvak, Meyer and Pajor [GLMP04]:
given two convex bodies K and L in Rn the volume ratio of the pair pK,Lq
is defined as

vrpK,Lq :“ inf

#

ˆ

|K|

|T pLq|

˙
1
n

: T pLq is contained in K

+

, (3.1)

where the infimum (actually a minimum) is taken over all affine transforma-
tions T . In other words, vrpK,Lq measures how well can K be approximated
by an affine image of L. Note that the classic value vrpKq is just vrpK,Bn

2 q

where Bn
2 is the Euclidean unit ball in Rn.

37
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Given a convex body K, it is natural to ask how “good” an approxima-
tion of this kind can be (in terms of the dimension of the ambient space).
Namely, we want to known how large the value vrpK,Lq is (for arbitrary
convex bodies L Ă Rn). Thus, it is important to compute the largest volume
ratio of K, given by

lvrpKq :“ sup
LĂRn

vrpK,Lq,

where the sup runs over all the convex bodies L. The best general bound
known so far for this quantity is due to Giannopoulos and Hartzoulaki
[GH02]. They proved that for every convex body K Ă Rn

lvrpKq ĺ logpnq
?
n. (3.2)

We will return to their result in Section 3.3. We first observe that for many
bodies K Ă Rn, the logarithmic factor in (3.2) can be removed having that

lvrpKq ĺ
?
n. (3.3)

In fact, there are not examples of convex bodies for which the largest volume
ratio is asymptotically strictly larger that the square root of the dimension
of the ambient space. We will show many examples of natural classes of
convex bodies for which we can achieve the bound (3.3). In all cases this
bound is sharp, since, as we will see in Chapter 4, we always have that

lvrpKq ľ
?
n.

3.1.1 Elementary properties

We now recall some elementary properties of the volume ratio that follow
directly from the definition. First notice that, as in the case of the simplex,
the volume ratio is invariant under affine transformations. In other words,
the volume ratio between K and L depends exclusively on the affine classes
of the bodies involved. Namely, given two affine transformations A,B P

GLpn,Rq,

vrpAK,BLq “ min
TBLĂAK

ˆ

|AK|

|TBL|

˙1{n

“ min
TBLĂK

ˆ

detpAq|K|

|TBL|

˙1{n

“ min
TBLĂK

ˆ

|K|

detpAq´1|TBL|

˙1{n

“ min
TBLĂK

ˆ

|K|

|A´1TBL|

˙1{n

“ min
T̃LĂK

ˆ

|K|

|T̃L|

˙1{n

“ vrpK,Lq.

Another useful property of the volume ratio is a sort of multiplicative triangle
inequality.
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Proposition 3.1.1. Given K,L Ă Rn, we have

vrpK,Lq ď vrpK,Zq ¨ vrpZ,Lq

for every convex body Z in Rn.

Proof. Suppose that TZ Ă K and SL Ă Z, then we have that TSL Ă K
and,

vrpK,Lq ď

ˆ

|K|

|TSL|

˙
1
n

“

ˆ

|K|

|TZ|

˙
1
n
ˆ

|Z|

|SL|

˙
1
n

.

Taking infimum on the right side we get,

vrpK,Lq ď vrpK,Zq vrpZ,Lq,

which completes the proof.

In the case that K and L are centrally symmetric we can relate their
volume ratio with the norm of operators between the spaces XK and XL.
We can also apply Blaschke-Santaló and Bourgain-Milman (Theorems 1.2.1
and 1.2.2) inequalities to relate it to the volume ratio between their polar
bodies.

Proposition 3.1.2. For every pair of centrally symmetric convex bodies
pK,Lq in Rn the following holds:

1.

vrpK,Lq “

ˆ

|K|

|L|

˙
1
n

¨ inf
TPSLpn,Rq

}T : XL Ñ XK},

where the infimum runs over all the linear transformations T that lie
on the special linear group of degree n (matrices of determinant one).

2. If T : XL Ñ XK is a linear operator we have that 1
}T :XLÑXK}

¨T pLq Ă
K and so

vrpK,Lq ď
}T : XL Ñ XK}|K|

1
n

|detT |
1
n |L|

1
n

.

3. vrpK,Lq „ vrpL˝,K˝q.

Proof. For (1) first notice that, if f : Rn Ñ Rn is an affine transformation,
say f “ T ` v with T linear and v P Rn, one has that if fpLq Ă K then
T pLq Ă K. In fact, since L is centrally symmetric, fpLq is symmetric with
respect to v. So, given x P L, both Tx ` v and v ´ T pxq lie in fpLq Ă K.
Since K is itself centrally symmetric, we have that T pxq ´ v P K and so, by
convexity, T pxq P K. As |fpLq| “ |TL| we can compute the volume ratio
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considering only linear operators. In that case, the condition that T pLq Ă K
can be written as }T : XL Ñ XK} ď 1, where }T : XL Ñ XK} denotes the
operator norm of T between the spaces XL and XK .

vrpK,Lq “ inf
}T :XLÑXK}ď1

ˆ

|K|

|TL|

˙
1
n

“ inf
TPGLpn,Rq

˜

|K|

| T
}T :XLÑXK}

L|

¸
1
n

“ inf
TPGLpn,Rq

ˆ

|K|

|L|

˙
1
n }T : XL Ñ XK}

pdetT q
1
n

“ inf
TPGLpn,Rq

ˆ

|K|

|L|

˙
1
n

›

›

›

›

›

T

pdetT q
1
n

: XL Ñ XK

›

›

›

›

›

“

ˆ

|K|

|L|

˙
1
n

inf
TPSLpn,Rq

}T : XL Ñ XK}.

Observe that (2) follows directly from the definitions of the operator norm.

Property (3) is a direct consequence of Blaschke-Santaló and Bourgain-
Milman inequalities (Theorems 1.2.1 and 1.2.2) and the fact that if TL Ă K,
T ˚K˝ Ă L˝. Indeed,

vrpK,Lq “ inf
TLĂK

ˆ

|K|

|TL|

˙
1
n
ˆ

|K˝|

|K˝|

˙
1
n
ˆ

|L˝|

|L˝|

˙
1
n

“ inf
TLĂK

ˆ

|L˝|

|T ˚K˝|

˙
1
n
ˆ

|K||K˝|

|L||L˝|

˙
1
n

„ vrpL˝,K˝q.

Notice that by Rogers-Shephards inequality Theorem 1.2.3, for every
convex body L Ă Rn we have vrpL ´ L,Lq ď 4. Therefore, by Proposi-
tion 3.1.1

vrpK,Lq ď vrpK,L´ Lq ¨ 4. (3.4)

Thus, the largest volume ratio of the bodyK can be estimated by considering
the sup over all symmetric bodies. Precisely,

lvrpKq ď 4 sup
LĂRn

vrpK,Lq, (3.5)

where the sup runs over all the centrally symmetric convex bodies L. This
will be useful since it allow us to deal only with bodies which are centrally
symmetric.
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3.2 Examples

In order to obtain upper bounds for the largest volume ratio for some natural
classes of convex bodies we need to introduce some tools. Before doing that
we review some examples where we can easily bound it. Recall that if a
centrally symmetric convex body K Ă Rn is in John’s position we have that

Bn
2 Ă K Ă

?
nBn

2

and hence vrpBn
2 ,Kq ĺ

?
n. Example 2.3.1 shows that vrpBn

2 , Sq „
?
n for

a simplex S. Then,

lvrpBn
2 q „

?
n.

In the previous chapter we proved that for a simplex S Ă Rn we have
vrpS,Kq ĺ

?
n for every convex body K Ă Rn. Since, by Example 2.1.1,

vrpS,Bn
2 q „

?
n we conclude that

lvrpSq „
?
n.

Recall that given K, the Dvoretzky and Rogers parallelepiped (see equation
(2.27)) fullfils that K Ă P and vrpP,Kq ď

?
n. Since every parallelepiped is

an affine image of the cube Bn
8, we have lvrpBn

8q ĺ
?
n. As vrpBn

8, B
n
2 q „?

n we get that

lvrpBn
8q „

?
n.

3.2.1 Polytopes

The next proposition was obtained by Bárány and Füredi [BF88], Carl and
Pajor [CP88] and Gluskin [Glu89] applying different techniques (all in 1988),
it bounds the volume of a polytope contained in the Euclidean ball.

Lemma 3.2.1. Let v1, . . . , vN P Bn
2 , then, for P :“ convtv1, . . . , vNu, we

have,

|P |
1
n ĺ

b

logp1` N
n q

n
. (3.6)

To prove the lemma we are going to use a result of Sidák regarding the
Gaussian measure of intersections of symmetric strips, which are sets of the
form

P “ tx P Rn | |xx, vy| ď αu,

for α ą 0 and v P Rn. A proof of it can be found in [AAGM15, Theorem
4.4.5].
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Proposition 3.2.2 (Sidák). If P1, . . . , PN are symmetric strips in Rn then

γn

˜

N
č

i“1

Pi

¸

ě

N
ź

i“1

γnpPiq,

where γn is the Gaussian measure in Rn.

Proof of Lemma 3.2.1. We will prove that if

K “ tx P Rn | |xx, viy| ď 1, for all 1 ď i ď Nu,

then

|K|
1
n ľ

1
b

logp1` N
n q

. (3.7)

The result then follows by polarity and applying Balschke-Santaló inequality
(Theorem 1.2.1). Indeed, P Ă K˝ and hence

|P |
1
n ď |K˝|

1
n ĺ

1

n|K|
1
n

.

In order to prove (3.7) set α ą 0 to be choosen later and consider the
symmetric strips

Pi “ tx P Rn | |xx, viy| ď αu.

The width of each Pi is given by 2α
}vi}2

ě 2α. So, if γn is the Gaussian
measure on Rn,

γnpPiq ě
1
?

2π

ż α

´α
e
´t2

2 dt ě 1´ e
´α2

2 .

Now, notice that αK “
ŞN
i“1 Pi and so

γnpαKq “ γn

˜

N
č

i“1

Pi

¸

ě

ˆ

1´ e
´α2

2

˙N

.

Since |αK| ě p2πq
n
2 γnpαKq, if we choose α “ 2

b

logp1` N
n q and take the

nth-root we have

2

c

logp1`
N

n
q|K|

1
n ě

?
2π

´

1´ e´2 logp1`N
n
q
¯N{n

“
?

2π

˜

1´
1

p1` N
n q

2

¸N{n

ě c

which completes the proof.
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Notice that Sidák’s result is actually a consequence of the recently proved
Gaussian inequality [Roy14] (see also[LM17]), which asserts that for any
pair of centrally symmetric convex bodies C1 and C2 one has γnpC1XC2q ě

γnpC1qγnpC2q.

We can use the previous lemma to bound the largest volume ratio for
polytopes with few vertices.

Proposition 3.2.3. Let c ą 0 and v1, . . . , vN P Rn with N “ rcns. If
P :“ convtv1, . . . , vNu then lvrpP q ĺ

?
n.

Proof. Assume P in Löwner’s position and consider the simplex S whose
vertices are the contact points given by Theorem 2.3.2. We have that S Ă P .
Using equation (2.11) we have that |S|

1
n ĺ 1

n and hence, applying Lemma
3.2.1,

ˆ

|P |

|S|

˙
1
n

ĺ

c

logp1`
n

cn
q „ 1. (3.8)

Now, given a convex body K Ă Rn, applying Theorem 2.3.4 we know that
vrpS,Kq ĺ

?
n. So, by Proposition 3.1.1,

vrpP,Kq ď vrpP, Sq vrpS,Kq ĺ
?
n.

Figure 3.1: Simplex formed by certain vertices of a polytope as in the proof
of Proposition 3.2.3.
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3.2.2 Unconditional bodies

We say that a convex body K is unconditional if px1, . . . , xnq P K im-
plies pεix1, . . . , εnxnq P K for any choice of sings εi P t´1, 1u. Notice
that an unconditional convex body is necessarily centrally symmetric and
}px1, . . . , xnq}K “ }pεix1, . . . , εnxnq}K . We also say that } ¨ }K is an uncon-
ditional norm .

We say that a body is permutationally symmetric if px1, . . . , xnq P K
implies pεixσp1q, . . . , εnxσpnqq P K for any choice of sings εi P t´1, 1u and
any permutation σ we also say that } ¨ }K is a permutationally symmetric
norm (is more common to use the term symmetric norm, but we want to
avoid any confusion with centrally symmetric bodies). The following lemma,
that is a consequence of a more general result due to Lozanovskii [Loz69]
(see also [TJ89, Lemma 39.3]), allows us to bound the volume ratio for
unconditional convex bodies.

Lemma 3.2.4. Let K Ă Rn be centrally symmetric convex body, there are
positive numbers a1, . . . , an such that

}pa1, . . . , anq}K “ 1 and }pa´1
1 , . . . , a´1

n q}K˝ “ n. (3.9)

Moreover, if K is permutationnaly symmetric, a1 “ ¨ ¨ ¨ “ an “
1

}p1,...,1q}K
.

Proof. Consider the function Φpt1, . . . , tnq :“ p
śn
i“1 tiq

1
n on the positive

orthant. Since it is strictly concave and 1-homogeneous it has a unique
maximum over BK. Set,

Φ0 “ Φpa1, . . . , anq “ maxtΦpt1, . . . , tnq|}pt1, . . . , tnq}K “ 1u,

and A “ tpt1 . . . , tnq|Φppt1 . . . , tnq ě Φ0u. Since A is strictly convex and K is
convex, there is pv1, . . . , vnq that separates both sets, i.e. }pv1, . . . , vnq}K˝ “
1 and xpv1, . . . , vnq, pt1, . . . , tnqy ą 1 for pt1, . . . , tnq P A, pt1, . . . , tnq ‰
pa1, . . . , anq. Since Φ is differentiable and 1-homogeneous, by Euler formula
we have that,

x∇Φpa1, . . . , anq, pa1, . . . , anqy “ Φ0.

The last equality implies that

x∇Φpa1, . . . , anq, pt1, . . . , tnqy ă Φ0

for all pt1, . . . , tnq P K, and then,

pv1, . . . , vnq “
∇Φpa1, . . . , anq

Φ
“

1

n
pa´1

1 , . . . , a´1
n q.

Hence, }pa´1
1 , . . . , a´1

n q}K˝ “ n.
If K is permutationally symmetric, since Φ is invariant under permu-

tations, by the uniqueness of the maximum, we must have a1 “ ¨ ¨ ¨ “ an,
what completes the proof.
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pa1, a2q

0

K

pa1, a2q

φ “ φ0

Figure 3.2: Level curves of φ as in the proof of Lemma 3.2.4

Remark 3.2.5. We can interpret the last result geometrically. Let K Ă Rn
be an unconditional convex body, consider the numbers a1, . . . , an given by
Lemma 3.2.4 and define DK as the diagonal operator with entries taiu1ďiďn,
then equation (3.9) together with unconditionality mean that DKB

n
8 Ă K

and D´1
K Bn

8 Ă nK˝, which implies,

DKB
n
8 Ă K Ă nDKB

n
1 . (3.10)

Taking volumes in equation (3.10), we have that,

detpDKq|B
n
8|

1
n ď |K|

1
n ď detpDKqn|B

n
1 |

1
n .

Since, |Bn
8|

1
n „ n|Bn

1 |
1
n , we conclude that vrpK,Bn

8q „ 1.

If we combine this fact with Theorem 2.5.2 we obtain the following result.

Corollary 3.2.6. Given an unconditional convex body K, set DK the di-
agonal operator as in Remark 3.2.5. Let L Ă Rn be a centrally symmetric
convex body such that L˝ is in isotropic position and consider the random
matrix

T :“
n
ÿ

j“1

Xj b ej ,

where X1, . . . , Xn are independently chosen accordingly to the uniform mea-
sure in the isotropic body L˝. With probability greater than or equal to
1 ´ e´n, for every unconditional isotropic body K Ă Rn, the position L̃ :“
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DKT pLq lies inside K and

ˆ

|K|

|L̃|

˙
1
n

ĺ

?
n

LL˝
. (3.11)

Proof. By Theorem 2.5.2 we know that with probability greater than 1´e´n,
T pLq Ă pBn

8q and

ˆ

|P |

|L|

˙
1
n

ĺ

?
n

LL˝
.

Hence DKT pLq Ă DKpB
n
8q Ă K and the result follows from the fact that

´

|K|
|DKpB

n
8q|

¯
1
n
„ 1.

It is worth to observe that if K is an isotropic unconditional convex body
we can ensure the existence of a “large” cube inside K. The next proposition
is due to Bobkov and Nazarov [BN03].

Proposition 3.2.7. Let K Ă Rn be an unconditional isotropic convex body.
Then, r´LK?

2
, LK?

2
sn Ă K.

Proof. Set K` “ 2K X Rn`. The barycenter v “ pv1, . . . , vnq of K` lies in
K`, then the rectangle r0, v1sˆ¨ ¨ ¨ˆr0, vns Ă K`. Since K is unconditional,
applying Khintchine inequality, we have that

4L2
K “

ż

K`
x2
i dx ď 2

ˆ
ż

K`
xidx

˙2

.

So, if we compute the coordinates of v we get

vi “

ż

K`
xidx ě

?
2Lk,

which implies the desired inclusion.

Notice that, since LK?
2
ě 1

2
?
eπ

(see Proposition 1.3.3), we have

„

´
1

2
?
eπ
,

1

2
?
eπ

n

Ă K.

We obtain the following corollary.

Corollary 3.2.8. Let L Ă Rn be a centrally symmetric convex body such
that L˝ is in isotropic position and consider the random matrix

T :“
n
ÿ

j“1

Xj b ej ,
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where X1, . . . , Xn are independently chosen accordingly to the uniform mea-
sure in the isotropic body L˝. With probability greater than or equal to
1 ´ e´n, for every unconditional isotropic body K Ă Rn, the position L̃ :“

1
2
?
πe
¨ T pLq lies inside K and

ˆ

|K|

|L̃|

˙
1
n

ĺ

?
n

LL˝
. (3.12)

Observe that in Corollary 3.2.8 we avoid the diagonal operator DK

adding the condition that K is isotropic. One can find the isotropic po-
sition of an unconditional convex body computing

ş

K x
2
i for 1 ď i ď n.

Hence, in the cases when one can compute that quantity, Corollary 3.2.8
seems more useful than Corollary 3.2.6.

3.3 Bounds for some natural classes of convex bod-
ies

3.3.1 Rudelson’s position

Given a convex body W Ă Rn we need to introduce a position W̃ highly
related with the well-known `-position (see Theorem 1.3.6). It has been
introduced by Rudelson in [Rud00] and its existence can be also tracked
in the proof of the main theorem of the paper of Giannopoulos and Hart-
zoulaki [GH02]. They use this position together with Chevet’s inequality to
bound the volume ratio. They prove that for every convex body K Ă Rn,
lvrpKq ĺ logpnq

?
n. So far, this is the best known general bound. However

is not known to be optimal, and, in fact for a wide class of natural convex
bodies (many of which we have already seen) the largest volume ratio can
be bounded by the square root of the dimension of the ambient space.

Proposition 3.3.1. Given a centrally symmetric convex body W Ă Rn there
is a position of W ,W̃ that satisfies:

• `pW̃ q ĺ
?
n logpnq,

• `pW̃ ˝q ĺ
?
n,

• }id : `n2 Ñ XW̃ ˝} ĺ
?
n

logpnq .

In particular,
1

|W̃ |
1
n

ď `pW̃ q ĺ
?
n logpnq.

When a convex body in Rn satisfies the previous estimates we say it is
in Rudelson’s-position.



48 CHAPTER 3. GENERAL BOUNDS

Proof. By Theorem 1.3.6 we can assume that W fulfils

`pW q`pW ˝q ĺ n logpnq.

Since this quantity is invariant under scalar multiplication suppose that
`pW q ĺ

?
n logpnq and `pW ˝q ĺ

?
n.

Choose S : Rn Ñ Rn such that

Bn
2 Ă SW ˝ Ă

?
nBn

2 , (3.13)

and consider T :“ I ` αS with α :“ logpnq
?
n

. Lets see that W̃ :“ pT ˚q´1pW q

is the wanted position. First,

`ppT ˚q´1pW qq “ `ppTW ˝q˝q “ `ppI ` αSqW ˝q˝q ď `pW q ` `ppαSW ˝q˝q

ď
?
n logpnq ` α`ppSW ˝q˝q.

Observe that by inclusion (3.13) we have that pSW ˝q˝ Ą 1?
n
Bn

2 and hence

`ppSW ˝q˝q ď
?
n`pBn

2 q ĺ n, what proves the first assertion.

For the second one, observe that since `p¨q is an operator norm,

`pW̃ ˝q “ `pTW ˝q “ `ppid` αSqW ˝q ď }pid` αSq´1 : `n2 Ñ `n2 }`pW
˝q.

Since id` αS is a positive operator, }pid` αSq´1 : `n2 Ñ `n2 } ď 1.

Finally,

}id : `n2 Ñ XW̃ ˝} “ }pid` αSq
´1 : `n2 Ñ XW ˝}

ď }ppαSq´1 ` idq´1 : `n2 Ñ `n2 }}ppαSq
´1 : `n2 Ñ XW ˝}

ď }ppαSq´1 : `n2 Ñ XW ˝} ď
1

α
.

The fact that 1

|W̃ |
1
n
ď `pW̃ q follows directly from Urysohn’s inequality,

Lemma 1.3.7.

As seen before there is a relation between the volume ratio of a pair of
centrally symmetric convex bodies K and L and the norm of operators from
XL to XK . The well known Chevet’s inequality bounds the expected value
of a random Gaussian operator in terms of some geometrical parameters of
the bodies K and L. It’s states that

Theorem 3.3.2 (Gaussian Chevet’s inequality). Let A “ pgijq1ďi,jďn P

Rnˆn be a random matrix with independent Gaussian entries gij „ N p0, 1q
and L,K Ă Rn two convex bodies, then

Ep}A : XL Ñ XK}q ĺ p`pKq}id : `n2 Ñ XL˝} ` }id : `n2 Ñ XK}`pL
˝qq.
(3.14)
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To our purposes we will use the following high probability version of the
Gaussian Chevet’s inequality (tail inequality).

Proposition 3.3.3. Let A “ pgijq1ďi,jďn P Rnˆn be a random matrix with
independent Gaussian entries gij „ N p0, 1q and K,L Ă Rn two convex

bodies. Then, for all u ě 0, with probability greater than 1´ e´u
2

we have

}A : XL Ñ XK} ĺ`pKq}id : `n2 Ñ XL˝} ` `pL
˝q}id : `n2 Ñ XK} (3.15)

` u}id : `n2 Ñ XL˝} ¨ }id : `n2 Ñ XK}.

We will give a sketch of the proof of this proposition in Section 3.4. First
we will show how Rudelson’s position together with Chevet’s inequality can
be used to bound the largest volume ratio for some natural classes of convex
bodies. Observe that, by Proposition 3.1.2 (2), bounding simultaneously the
determinant (from below) and the norm (from above) of an operator gives
a bound for the volume ratio. We will also need the following lower bound
for the determinant of a random Gaussian matrix, which can be found in
[Piv10, Corollary 1].

Lemma 3.3.4. Let A “ pgijq1ďi,jďn P Rnˆn with gij „ N p0, 1q, then with

probability at least 1´ e´n we have

detpAq
1
n ľ

?
n. (3.16)

Combining the last inequality together with Proposition 3.3.6, we can
ensure that for any u ď

?
n, with probability greater than 1 ´ 2e´u

2
, a

random Gaussian operator A fulfils both,

detpAq
1
n ľ

?
n,

and

}A : XL Ñ XK} ĺ`pKq}id : `n2 Ñ XL˝} ` `pL
˝q}id : `n2 Ñ XK} (3.17)

` u}id : `n2 Ñ XL˝} ¨ }id : `n2 Ñ XK},

for any pair of convex bodies K,L Ă Rn. Recall also that for T P GLpn,Rq,
by Proposition 3.1.2 (2),

vrpK,Lq ď
}T : XL Ñ XK}|K|

1
n

| detT |
1
n |L|

1
n

. (3.18)

Assuming that L is in Rudelson’s position, and combining equations (3.17)
and (3.18), we have that TL

}T } Ă K and

˜

|K|

| TL
}T } |

¸
1
n

ĺ `pKq|K|
1
n
?
n` plogpnq ` uq

?
n}id : `n2 Ñ XK}|K|

1
n (3.19)

with probability greater than or equal to 1 ´ 2e´u
2
. Hence, we have the

following proposition.
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Proposition 3.3.5. Let K Ă Rn be a convex body and 0 ď u ď
?
n, then

lvrpKq ĺ `pKq|K|
1
n
?
n` logpnq

?
n}id : `n2 Ñ XK}

`u
?
n}id : `n2 Ñ XK}|K|

1
n .

In the following we are going to use the last proposition to bound the
volume ratio for some classes of convex bodies.

3.3.2 Unitary invariant norms

We will first focus on the unit balls of the Schatten classes. For every matrix
T Ă Rdˆd consider spT q “ ps1pT q, . . . , sdpT qq the sequence of eigenvalues of

pTT ˚q
1
2 (the singular values of T ). The p-Schatten norm of T P Rdˆd is

defined as

σppT q “ }spT q}`dp ; (3.20)

that is, the `p-norm of the singular values of T . The p-Schatten norm arises
as a generalization of the classical Hilbert-Schmidt norm. Many different
properties of them in the finite dimensional setting have been largely stud-
ied in the area of asymptotic geometric analysis. For example, Köning,
Meyer and Pajor [KMP98] established the boundedness of the isotropic con-
stants of the unit balls of Sdp Ă Rdˆd (1 ď p ď 8), Guédon and Paouris
[GP07] also studied concentration mass properties for the unit balls, Barthe
and Cordero-Eurasquin [BCE13] analyzed variance estimates, Radke and
Vritsiou [RV16] proved the thin-shell conjecture, and recently Kabluchko,
Prochno and Thäle [KPT18] exhibited the exact asymptotic behaviour of
the volume and standard volume ratio; just to mention a few.

Therefore it is natural to try to understand what happens with the
largest volume ratio of their unit ball.

We write Sdp :“ pRdˆd, σpq and denote by BSdp Ă Rdˆd the unit ball of

Sdp . Schatten norms are particular cases of a more general class of norms,

unitary invariant norms. A unitary invariant norm N on Rdˆd, is a norm
that satisfies N pUTV q “ N pT q for all U, V P Opdq. The norm σp is one
of the most important unitary invariant operator norms. Given a unitary
invariant norm N in Rdˆd we can define the permutationally symmetric
norm τ in Rd as follows,

τpxq :“ N pDxq, (3.21)

where Dx is the diagonal matrix with entries the coefficients of x. The
unitary invariance of N implies that τ is permutationally symmetric. Given
T P Rdˆd, since pTT ˚q

1
2 is diagonalizable in an orthonormal basis we have

that for every T P Rdˆd

N pT q “ τps1pT q, . . . , snpT qq.
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For example, if N is σp, τ is the usual `p-norm.

Set λpτq “ τp
řd
i“1 eiq by Lemma 3.2.4, we have that

1

λpτq
Bd
8 Ă Bτ Ă

d

λpτq
Bd

1 ,

and hence

1

λpτq
Sd8 Ă BN Ă

d

λpτq
Sd1 . (3.22)

Taking volumes we have that

1

λpτq
|Sd8|

1
d2 ď |BN |

1
d2 ď

d

λpτq
|Sd1 |

1
d2 .

In [Ray84], Saint Raymond computed the volume of BSdp for 1 ď p ď 8, in
particular, he proved that

|Sd8|
1
d2 „ d|Sd1 |

1
d2 „

1
?
d
. (3.23)

Hence , we conclude that

|BN |
1
d2 „ |

1

λpτq
Sd8|

1
d2 . (3.24)

Theorem 3.3.6. Let BN be the unit ball of any unitary invariant norm
N in Rdˆd and L Ă Rd2 a convex body in Rudelson’s position, and let
A “ pgijq1ďi,jďd2 P Rd2ˆd2 be a random matrix with independent Gaussian

entries gij „ N p0, 1q. Then with probability greater than 1´ 2e´d, the body
L̃ :“ AL

}A}
1

τpuq Ă BN and also

|BN |
1
d2

|L̃|
1
d2

ĺ d.

Proof of Theorem 3.3.6. Note that by equation (3.23) we know that

|BSd8 |
1
d2 „ d´

1
2 .

On the other hand, set G a dˆd matrix with independent Gaussian entries.
By Gaussian Chevet’s inequality (3.3.2), we know that

Ep}G : `d2 Ñ `d2}q ĺ
?
d.

Since }G : `d2 Ñ `d2} coincides with }G}Sd8 , we have that

`pBSd8q|BSd8 |
1
d2 „ 1.
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The inclusion Bd
2 Ă Bd

8 implies BSd2
Ă BSd8 and hence, }id : Sd2 Ñ Sd8} ď 1,

which coincides with }id : `d
2

2 Ñ Sd8} ď 1 since the norm in Sd2 is the
Euclidean norm in Rdˆd.

Using the fact that L is in Rudelson’s position, by equation (3.19) we
have that for u “

?
d, ApLq Ă }A}Sd8, and

ˆ

}A}|Sd8|
|ApLq|

˙

1
d

ď d.

with probability greater than 1´ e´d.

By Equation (3.22),

L̃ :“
1

λpτq

ApLq

}A}
Ă

1

λpτq
Sd8 Ă BN

As | 1
λpτqS

d
8|

1
d2 „ |BN |

1
d2 we obtain the desired bound.

As a consequence of this we have the following corollary.

Corollary 3.3.7. Let N be a unitary invariant norm in Rdˆd then

lvrpBN q ĺ d.

3.3.3 Tensor norms

Another natural class of convex bodies for which we can obtain sharp asymp-
totic bounds for the largest volume ratio are unit balls of norms given by
tensor products of `p-spaces. Tensor products play a key role in the local
theory of Banach spaces. They can be identified with natural spaces such
as multilinear forms and homogeneous polynomials. We will review the ba-
sic definitions regarding tensor products, we refer to [DF92, Din99, Flo97]
for a complete treatment on the subject. Given a normed space E we
write

ÂmE for the m-fold tensor product of E, and
Âm,sE stands for

the symmetric m-fold tensor product, that is, the subspace of
ÂmE con-

sisting of all tensor that can be written as
řk
i“1 λi b

m xi, where λi P R and
bmxi “ xib¨ ¨ ¨bxi. Observe that if E has dimension n, dimp

ÂmEq “ nm

and dimp
Âm,sEq “

`

m`n´1
n´1

˘

. Since we consider m as a fixed number, we
have that in both cases the dimension of the space behaves like nm.

There are many norms than can be defined on the tensor product, we
will focus on two of them. The projective tensor norm is define as

πpxq “ inf

#

r
ÿ

j“1

m
ź

i“1

}xri }E

+

,
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where the infimum is taken over all representations of x, x “
řr
i“1 x1b¨ ¨ ¨b

xm. The injective tensor norm is defined as

εpxq “ sup

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

j“1

m
ź

i“1

|ϕipx
r
i q|

ˇ

ˇ

ˇ

ˇ

ˇ

,

where the supremum runs over all ϕ1, . . . , ϕm P E
˚ and

řr
j“1 x1b¨ ¨ ¨bxm is

a fixed representation of x. Let α “ ε or π, we write
Âm

α for m-fold product
endowed with the norm α.

The space
Âm

ε E can be identified with the space of m-linear operators
defined on pE˚qm endowed with the usual supremum norm. An operator
T : Em Ñ R is m-nuclear if can be written as,

T “
8
ÿ

i“1

ϕi1 . . . ϕ
i
m,

with ϕ P E˚ and
ř8
i“1 }ϕ

i
1}E˚ . . . }ϕ

i
m}E˚ ă 8. We can define the following

norm on the space of all m-nuclear operators.

}T }nuc “ inft
8
ÿ

i“1

}ϕi1}E˚ . . . }ϕ
i
m}E˚u,

where infimum is taken over all representation of T as above. With this
norm, the space of all m-nuclear operators on pE˚qn can be identified with
Âm

π E.
In the same way we can define the corresponding injective and projective

norms in the symmetric tensor product. We define the symmetric projective
norm as,

πspxq :“ inf

#

r
ÿ

i“1

}xi}
m
E

+

,

where the infimum is taken over all the representation of x of the form
x “

řr
i“1b

mxi.
The symmetric injective norm is computed as follows,

εspxq “ sup
ϕPBE1

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

i“1

ϕpxiq
m

ˇ

ˇ

ˇ

ˇ

ˇ

,

where x “
řr
i“1b

mxi is a fixed representation of x. It is important to
notice that, in general, the tensor norms and their symmetric version do not
coincide. That is, α

ˇ

ˇ

Âm,s E
‰ αs.

The spaces
Âm,s

εs
E and

Âm,s
πs

E can be represented as spaces of poly-
nomials. A function p : X Ñ R is said to be an m-homogeneous polynomial
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if there is an m-linear form ϕ : Em Ñ R such that ppxq “ ϕpx, . . . , xq. We
write PpmEq for the set of m-homogeneous polynomials on E. If we define
in PpmE˚q the norm,

}p} :“ supxPBE |ppxq|,

the space is isometric to
Âm,s

εs
E.

An m-homogeneous polynomial is said to be nuclear if can be written as

ppxq “
8
ÿ

i“1

λipϕipxqq
m,

where λi P R, ϕi P E
˚ and

ř8
i“1 |λi|}ϕi}E˚ ă 8. We write PnucpmEq for

the space of nuclear polynomials. If we define the norm,

}p}nuc “ inf

#

8
ÿ

i“1

|λi|}ϕi}E˚

+

,

where the infimum is taken over all representations of p as above. The space
PnucpmE˚q with the correspondent norm is identified with

Âm,s
πs

E.

We are going to work with E “ `np and, as we did in the case of the
unitary invariant norms, in order to obtain bounds for the volume ratio
we need to have estimates of some geometrical parameters of the involved
spaces. Defant and Prengel [DP09] obtained asymptotic estimates for many
of them. We summarize their results in the next proposition.

Proposition 3.3.8. For m P N set d “ nm and ds “
`

m`n´1
n´1

˘

. For each
1 ď p ď 8 we have,

1.
ˇ

ˇ

ˇ
BÂm,s

εs
`np

ˇ

ˇ

ˇ

1
ds
„

ˇ

ˇ

ˇ
BÂm

ε `np

ˇ

ˇ

ˇ

1
d
„

#

n
mp 1

2
´ 1
p
q´ 1

2 p ď 2

n
´ 1
p p ě 2.

2.
ˇ

ˇ

ˇ
BÂm,s

πs
`np

ˇ

ˇ

ˇ

1
ds
„

ˇ

ˇ

ˇ
BÂm

π `np

ˇ

ˇ

ˇ

1
d
„

#

n
1´ 1

p
´m

p ď 2

n
1
2
´mp 1

2
` 1
p
q

p ě 2.

3. `pBÂm,s
εs

`np
q „ `pBÂm

ε `np
q „

#

n
mp 1

p
´ 1

2
q` 1

2 p ď 2

n
1
p p ě 2.

4. `pBÂm,s
πs

`np
q „ `pBÂm

π `np
q „

#

n
m´1` 1

p p ď 2

n
mp 1

2
` 1
p
q´ 1

2 p ě 2.

5. }id : `ds2 Ñ
Âm,s

εs
`np } „ }id : `d2 Ñ

Âm
ε `

n
p } „

#

n
mp 1

2
´ 1
p
q

p ď 2

1 p ě 2.
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6. }id : `ds2 Ñ
Âm,s

πs
`np } „ }id : `d2 Ñ

Âm
π `

n
p } „

$

’

’

&

’

’

%

n
m
2
` 1
p
´1

p ď 2

n
m
p
´ 1

2 2 ď p ď 2m

1 p ě 2m.

All the proofs can be found in [DP09]. The comparison between the full
and symmetric tensor products follows from [DP09, Proposition 3.1]. The
estimates (1) and (2) are in [DP09, Theorem 4.2]. For (3) and (4) see [DP09,
Lemma 4.3]. The proof of (5) follows form the fact that

}id : `n
m

2 Ñ

m
â

ε

`np } “ }id : `n2 Ñ `np }
m.

For (6) more technical arguments are required, the result is stated in [DP09,
Lemma 5.2].

Observe that, in particular, for every space E involved in the last propo-
sition, we have that

`pBEq|BE |
1

dimpEq „ 1.

Hence, by equation (3.19), if K “ BE , and N “ dimpEq we have, that if
L is any convex body in Rudelson’s position and A is a random Gaussian
matrix,

ˆ

}A}|K|

|ApLq|

˙
1
N

ĺ
?
N ` plogN ` uq

?
N}id : `N2 Ñ E}|BE |

1
N .

with probability greater than 1´ 2e´u
2
. Now, if we take for example, E “

Âm
ε `

n
p with p ď 2, we have that

}id : `N2 Ñ
m
â

ε

`np }|B
Âm
ε `np

|
1
N “ n

2mp 1
2
´ 1
p
q´ 1

2 .

So, taking u “ n
´2mp 1

2
´ 1
p
q` 1

2 ě logpNq, we get
ˆ

}A}|K|

|ApLq|

˙
1
N

ĺ
?
N.

It can be checked that in all cases, }id : `N2 Ñ E}|BE |
1
N ĺ 1

logpNq . So,
choosing

u´1 “ }id : `N2 Ñ E}|BE |
1
N

we have that with high probabilty
ˆ

}A}|K|

|ApLq|

˙
1
N

ĺ
?
N.

Arguing analogously for the other cases we obtain the following theorem.

Theorem 3.3.9. For E “
Âm

ε `
n
p ,
Âm,s

εs
`np ,

Âm
π `

n
p or

Âm,s
πs

`np and N “

dimpEq we have that,

lvrpBEq ď
?
N.
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3.4 Gaussian processes and Chevet’s inequality

We will now present the proof of Proposition 3.3.3. For that we need to
introduce some definitions regarding random processes. Let pΩ,Σ,Pq be a
probability space. By a random process we simply mean a family of random
variables tXtutPT : Ω Ñ R where T is any set. The problem of bounding the
norm of an operator can be thought as the problem of bounding the supre-
mum of a random process. Since the supremum of measurable functions is
not necessarily measurable, we define the supremum of a process as follows:

sup
tPT

Xt “ sup
T0ĂT,
T0 finite

psup
tPT0

Xtq.

We define the increment of the process as

dps, tq :“ }Xs ´Xt}2 “ pEpXs ´Xtq
2q

1
2 .

We say that the process is a Gaussian process if for every finite set
T0 Ă T , the vector pXiqiPT 0 has normal distribution. Equivalently, any
linear combination,

ř

atXt is a normal random variable. A basic example
is the so-called canonical Gaussian process

Xt :“ xg, ty, (3.25)

where g is a standard Gaussian random vector and T Ă Rn is any set. In
this case the increments coincide with the euclidean distances in Rn.

The proof of Chevet’s inequality relies on an inequality of Sudakov (see
for example [AAGM15, Proposition 9.1.7]) that compares the supremum of
two Gaussian process that have comparable increments.

Proposition 3.4.1 (Sudakov). Let pΩ,Σ,Pq be a probability space and let
tXtutPT and tYtutPT be two Gaussian process, with EpXtq “ EpYtq “ 0 for
all t P T . If

}Xt ´Xs}2 ď }Yt ´ Ys}2 (3.26)

for every s, t P T , then

E sup
tPT

Xt ď E sup
tPT

Yt.

In order two deduce Chevet’s inequality from Proposition 3.4.1, set T “
LˆK˝ and consider the Gaussian process given by

Xpx,y˚q :“ xAx, y˚y,

where A is a matrix with entries gij „ N p0, 1q and

Ypx,y˚q :“ xg, xy}id : `n2 Ñ XK} ` xh, y
˚y}id : `n2 Ñ XL˝},
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where g “ pg1, . . . , gnq, h “ ph1, . . . , hnq and pgiq
n
i“1, phjq

n
j“1 are independent

standard Gaussian variables. Note that

Ep sup
px,y˚qPT

Ypx,y˚qq “ p`pKq}id : `n2 Ñ XL˝} ` }id : `n2 Ñ XK}`pL
˝qq.

In order to prove Proposition 3.3.3, we are going to use a result of Tala-
grand ( [Ver18, Theorem 8.5.5]) that is set in a more general context. In our
setting it could be seen as a tail bound for Proposition 3.4.1. Here, } ¨ }ψ2

stands for the sub-Gaussian norm, defined as

}X}ψ2 :“ inftλ ą 0 |

ż

Ω
e
|Xpωq|2

λ2 dµ ď 2u.

Theorem 3.4.2. Let pXtqtPT be a random process and pYtqtPT a Gaussian
process such that }Xt´Xs}ψ2 ď }Yt´Ys}2. Then, for every u ě 0, the event

sup
tPT
|Xt| ĺ pEpsupYtq ` u 9diampT qq

holds with probability at least 1 ´ 2e´u
2
. Here the diameter of T is with

respect to the distance defined by the increments of the process Yt.

We now include a sketch of the proof of Proposition 3.3.3.

Sketch of the proof of Proposition 3.3.3. As before, we define random pro-
cess in LˆK˝ given by

Xpx,y˚q :“ xAx, y˚y.

Note that if we consider the Gaussian process

Ypx,y˚q :“ xg, xy}id : `n2 Ñ XK} ` xh, y
˚y}id : `n2 Ñ XL˝},

where g “ pg1, . . . , gnq, h “ ph1, . . . , hnq and pgiq
n
i“1, phjq

n
j“1 are independent

standard Gaussian variables; we have,

}Xpx,y˚q ´Xpx̃,ỹ˚q}ψ2 ĺ }Ypx,y˚q ´ Ypx̃,ỹ˚q}2.
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In fact,

}Xpx,y˚q ´Xpx̃,ỹ˚q}ψ2 “ }
ÿ

i,j

gijpxiy
˚
j ´ x̃iỹ

˚
j q}ψ2

ď

˜

ÿ

i,j

}gijpxiy
˚
j ´ x̃iỹ

˚
j q}

2
ψ2

¸
1
2

ď

˜

ÿ

i,j

|xiy
˚
j ´ x̃iỹ

˚
j |

2

¸
1
2

ď

˜

ÿ

i,j

|xiy
˚
j ´ x̃iy

˚
j ` x̃iy

˚
j ´ x̃iỹ

˚
j |

2
2

¸
1
2

ď }x´ x̃}2}ỹ
˚}2 ` }x}2}y

˚ ´ ỹ˚}2

ď }x´ x̃}2}id : `n2 Ñ XK} ` }y
˚ ´ ỹ˚}2}id : `n2 Ñ XL˝}.

“ }Ypx,y˚q ´ Ypx̃,ỹ˚q}2.

Applying Theorem 3.4.2 we get,

}A : XL Ñ XK} “ sup
px,y˚qPLˆK˝

Xpx,y˚q

ĺ

˜

Er sup
px,y˚qPLˆK˝

Ypx,y˚qs ` u diampK ˆ L˝q

¸

,

with probability at least 1´ e´u
2
.

The result follows from the fact that

Er sup
px,y˚qPLˆK˝

Ypx,y˚qs “ `pKq}id : `n2 Ñ XL˝} ` `pL
˝q}id : `n2 Ñ XK}

and diampLˆK˝q „ }id : `n2 Ñ XL˝} ¨ }id : `n2 Ñ XK}.



Chapter 4

Lower bounds

In this chapter we deal with lower bounds for the largest volume ratio. We
will prove that for every convex body K Ă Rn, lvrpKq ľ

?
n. If we combine

this bound with the one obtained in the previous chapter we conclude that it
is the best possible general bound. The key ingredient for the proof is the use
of certain random polytopes that were introduced by Gluskin while studying
the diameter of the Banach-Mazur compactum. We define this polytopes
and show how to use them to bound the volume ratio in Section 4.2.

4.1 Lower bound for the largest volume ratio

We now treat lower bounds for the largest volume ratio of a given convex
body K. That is, for a convex body K we want to find another body, L,
such that vrpK,Lq is “large”. Khrabrov, in [Khr01], proved that for every
convex body K Ă Rn there is a convex body L such that

vrpK,Lq ľ

c

n

log logpnq
. (4.1)

We will remove the double logarithm in equation (4.1) proving that

lvrpKq ľ
?
n (4.2)

holds for every convex body K Ă Rn. Taking into account that, as we have
seen in the previous chapter, for many collections of bodies we know that
lvrpKq ĺ

?
n, the bound in (4.2) is the best possible general bound. By

Proposition 3.1.1, he have

vrpK ´K,Lq ď vrpK,Lq vrpK ´K,Kq „ vrpK,Lq.

Hence, we can reduce the problem of bounding from bellow the largest vol-
ume ratio to the centrally symmetric case. Recall the statement of Propo-
sition 3.1.2 (1): given K,L Ă Rn two centrally symmetric convex bodies,
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vrpK,Lq “

ˆ

|K|

|L|

˙
1
n

¨ inf
TPSLpn,Rq

}T : XL Ñ XK}. (4.3)

Therefore, to show “good” lower bounds for lvrpKq (for K centrally
symmetric) we need a body L such that its volume is “small” and the norm
}T : XL Ñ XK} is large for every operator T P SLpn,Rq. Recall that, by
equation (3.4) lvrpKq can be computed taking the supremum of vrpK,Lq
only over centrally symmetric bodies L.

4.2 Gluskin’s polytopes

The key idea of [Khr01] is to use the probabilistic method. He considered
random polytopes with vertices distributed on the unit sphere and proved
that the probability that such a body satisfies the bound (4.1) is positive.
He is based on Gluskin’s work [Glu81], who defined the random bodies

Lpmq :“ absconvtX1, . . . , Xm, e1, . . . , enu, (4.4)

where tXiu
m
i“1 are independent vectors distributed according to the normal-

ized Haar measure in Sn´1, σ. We can construct σ as a cone measure as
follows:

σnpAq “
|tx P Bn

2 |
x
}x}2

P Au|

|Bn
2 |

, (4.5)

for any set A Ă Sn´1.

e1

X1

´e2

´X2

´e1

´X1

X2

e2

Figure 4.1: Random polytope Lp2q in R2.

He used this construction to find the asymptotic order of the diameter
of the Banach-Mazur compactum (also known as Minkowski compactum),
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Cn, the set of all n-dimensional centrally symmetric convex bodies endowed
with the Banach-Mazur distance:

dBM pK,Lq “ infta ¨ b |
1

a
K Ă TD Ă bKu, (4.6)

where the infimum is taken over all invertible linear operators T : Rn Ñ Rn.
John’s theorem implies that dBM pK,B

n
2 q ď

?
n for every body K, and hence

diampCnq ď n. Gluskin showed that, if m „ n, with positive probability,
two random polytopes Lpmq and L1pmq fulfill:

dBM pL
pmq, L1pmqq ľ n.

It should be noted that, since Lpmq Ă Bn
2 , by Lemma 3.2.1 the volume

of the random polytope Lpmq is bounded by

|Lpmq|
1
n ĺ

a

logpmn q

n
. (4.7)

In fact, this bound is the exact asymptotic growth of |Lpmq|
1
n with proba-

bility greater than or equal to 1´ 1
m [BGVV14, Chapter 11].

If we combine the volume bound (4.7) with (4.3) we need to prove the
existence of an operator T for which we can bound from below the norm
}T : XLpmq Ñ XK} for all random polytopes. Note that as m grows,
infTPSLpn,Rq }T : XLpmq Ñ XK} becomes larger but 1

|Lpmq|1{n
decreases, so

there is some sort of trade-off.
In [Khr01], for m “ n logpnq, it is shown that, with high probability, the

norm }T : XLpmq Ñ XK} is “large” for every T P SLpn,Rq. To achieve all
this he proved the following interesting inequality:

If K Ă Rn is in Löwner’s position then for very m P N and every β ą 0,

P

#

There exists T P SLpn,Rq : }T : XLpmq Ñ XK} ď β

ˆ

|Bn
2 |

|K|

˙1{n
+

(4.8)

ď
`

C
?
n
˘n2

ˆ

|Bn
2 |

|K|

˙n

βnm´n
2
.

In order to prove main contribution of this section, Theorem 4.2.9, we
present the following refinement of the previous estimate.

Proposition 4.2.1. Let K Ă Rn be centrally symmetric convex body and
Lpmq the random polytope defined in (4.4), then for every β ą 0 we have

P

#

There exists T P SLpn,Rq : }T : XLpmq Ñ XK} ď β

ˆ

|Bn
2 |

|K|

˙1{n
+

ď Cn
2
´

}id : `n2 Ñ XK}
?
n|K|

1
n

¯n2

p2βqnm,

for some absolute constant C ą 0.
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To prove Proposition 4.2.1 we need a couple of lemmas. The first one,
Lemma 4.2.2 bounds the probability that a fixed operator T : Rn Ñ Rn
of determinant one has “large” norm. The second one, Lemma 4.2.3 is a
technical tool which bounds the number of points in an ε-net for an adequate
set. This allows us to use a standard ε-net argument to pass from one fixed
operator to all operators in SLpn,Rq.

Lemma 4.2.2. Let K Ă Rn be a convex body, Lpmq the random polytope in
(4.4), T P SLpn,Rq and α ą 0. Then

P t}T : XLpmq Ñ XK} ď αu ď αmn
ˆ

|K|

|Bn
2 |

˙m

. (4.9)

Proof. Note that if Lpmq “ absconvtX1, . . . , Xm, e1, . . . , enu, in order to have
}T : XLpmq Ñ XK} ď α, we must have that for all 1 ď i ď m, TXi P αK.
Hence,

P t}T : XLpmq Ñ XK} ď αu ď Pt For all 1 ď i ď m, TXi P αKu

“ σtSn´1
č

T´1pαKqum,

Recall that σ can be obtained as a cone measure (equation (4.5)) and hence,

σtSn´1
č

T´1pαKqu “
|tx P Bn

2 |
x
}x}2

P Sn´1
Ş

αT´1pKqu|

|Bn
2 |

.

Since αT´1pKq is a convex body which contains the origin, we have that

tx P Bn
2 |

x

}x}2
αT´1pKqu Ă αT´1pKq,

and hence,

σtSn´1
č

T´1pαKqu ď
|αT´1pKq|

|Bn
2 |

“ αn
|K|

|Bn
2 |
.

We now present the second lemma involved in the proof of Proposi-
tion 4.2.1. This should be compared with [Khr01, Lemma 5]: note that the
set and the metric differ. This subtle but important modification is the key
ingredient we need.
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Lemma 4.2.3. Let K Ă Rn be a convex body, γ ą 0 and

MK
γ :“ tT P SLpn,Rq and }T : `n1 Ñ XK} ď γu .

There is a γ-net, NK
γ for MK in the metric Lp`n2 , XKq such that

#NK
γ ď Cn

2
´

}id : `n2 Ñ XK}
?
n|K|1{n

¯n2

.

Proof. Let U be the unit ball of Lp`n2 , XKq. By the standard identification
we considerMK and U as subsets of Rnˆn. Let NK

γ be a maximal collection

of elements ofMK γ-separated. These elements form an γ-net and, for every
ξ P NK

γ , the balls ξ ` γ
2U are disjoints. Since

}T : `n1 Ñ XK} ď }T : `n2 Ñ XK},

we have that γU Ă tT : }T : `n1 Ñ XK} ď γu and then

ď

ξPNK
γ

ξ `
γ

2
U Ă

3

2
tT : }T : `n1 Ñ XK} ď γu .

Computing the volume on both sides, we get the following bound for #NK
ε ,

#NK
γ

´γ

2

¯n2

|U | ď

ˆ

3

2

˙n2

|tT : }T : `n1 Ñ XK} ď γu|

#NK
γ ď

ˆ

3

γ

˙n2

|tT : }T : `n1 Ñ XK} ď γu|

|U |
. (4.10)

Now notice that

tT P Lp`n1 , XKq : }T : `n1 Ñ XK} ď γu

Ă
 

X P Rnˆn : Xi P γ ¨K for all i
(

Ă pγKq ˆ ¨ ¨ ¨ ˆ pγKq
looooooooooomooooooooooon

n

, (4.11)

and hence

|tT : }T : `n1 Ñ XK} ď γu| ď pγqn
2
|K|n. (4.12)

In order to bound equation (4.10) we need a lower bound for |U |. By passing
to spherical coordinates it can be checked that

|U |

|Bn2

2 |
“

ż

Sn2´1

}T }´n
2

Lp`n2 ,XKq
dσpT q, (4.13)
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where σ is the normalized Haar measure on Sn
2´1. Now we apply Hölder’s

inequality to get

1 ď

¨

˚

˝

ż

Sn2´1

}T }2Lp`n2 ,XKq
dσpT q

˛

‹

‚

1{2 ¨

˚

˝

ż

Sn2´1

}T }´2
Lp`n2 ,XKq

dσpT q

˛

‹

‚

1{2

ď

¨

˚

˝

ż

Sn2´1

}T }2Lp`n2 ,XKq
dσpT q

˛

‹

‚

1{2 ¨

˚

˝

ż

Sn2´1

}T }´n
2

Lp`n2 ,XKq
dσpT q

˛

‹

‚

1{n2

.

Therefore,

|U |

|Bn2

2 |
ě

¨

˚

˝

ż

Sn2´1

}T }2Lp`n2 ,XKq
dσpT q

˛

‹

‚

´n2{2

.

By comparing spherical and Gaussian means (equation (1.10)) and applying
Gaussian Chevet’s inequality 3.3.2 (recall that all Gaussian moments are
comparable (1.12)), we have that

¨

˚

˝

ż

Sn2´1

}T }2Lp`n2 ,XKq
dσpT q

˛

‹

‚

1{2

ĺ
1

n

`

`pKq ` }id : `n2 Ñ XK}
?
n
˘

,

which implies

`

`pKq ` }id : `n2 Ñ XK}
?
n
˘´n2

C´n
2
ě |U |. (4.14)

Using (4.12) and (4.14) in Equation (4.10) we obtain:

#NK
γ ď Cn

2
´

`pKq|K|1{n ` }id : `n2 Ñ XK}
?
n|K|1{n

¯n2

.

Now notice that since Bn
2 Ă }id : `n2 Ñ XK}K we have that,

1

}id : `n2 Ñ XK}
K˝ Ă Bn

2

and hence ωpK˝q ď }id : `n2 Ñ XK}. Recalling that `pKq „
?
nωpK˝q we

get,

`pKq ď }id : `n2 Ñ XK}
?
n, (4.15)

what concludes the proof.
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Now we present the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1. Let tXiu
m
i“1 Ă Sn´1 and Lpmq be the polytope

in (4.4) such that there exists T P SLpn,Rq with }T : XLpmq Ñ XK} ď γ.
As `n1 Ă Lpmq, T lies in the set MK defined in Lemma 4.2.3. Consider a
γ-net, NK

γ for MK for the metric Lp`n2 , XKq such that

#NK
γ ď Cn

2
´

}id : `n2 Ñ XK}
?
n|K|

1
n

¯n2

. (4.16)

Let S P NK
γ such that }S ´ T }Lp`n2 ,XKq ď γ, then

}S : XLpmq Ñ XK} ď }T : XLpmq Ñ XK} ` }S ´ T : XLpmq Ñ XK}

ď γ ` }S ´ T : `n2 Ñ XK}

ď 2γ,

where we have used the fact that }S´T : XLpmq Ñ XK} ď }S´T : `n2 Ñ XK}

since, by construction, Lpmq Ă Bn
2 . Hence,

Bγ :“ tThere exists T P SLpn,Rq : }T : XLpmq Ñ XK} ď γu

Ă
ď

SPNK
γ

t}S : XLpmq Ñ XK} ď 2γu .

Take γ0 :“ β
´

|Bn2 |
|K|

¯
1
n

, by the union bound, equation (4.16) and Lemma 4.2.2

PpBγ0q ď Cn
2
´

}id : `n2 Ñ XK}
?
n|K|

1
n

¯n2

p2βqnm, (4.17)

which concludes the proof.

As a consequence of Proposition 4.2.1 we obtain the following result.

Proposition 4.2.4. Let K Ă Rn be centrally symmetric convex body such
that

}id : `n2 Ñ XK}
?
n|K|

1
n „ 1.

Given δ ě 1, with probability greater than or equal to 1 ´ e´n
2

the random
polytope Lprδnsq in (4.4) verifies

?
n ĺ vrpK,Lprδnsqq.

In particular,
?
n ĺ lvrpKq.
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Proof. By Proposition 4.2.1 we know that there is an absolute constant
C ą 0 such that, for every β ą 0,

P

#

There exists T P SLpn,Rq : }T : XLpmq Ñ XK} ď β

ˆ

|Bn
2 |

|K|

˙1{n
+

ď Cn
2
p2βqnm.

If m “ rδns and β ď 1
2pCeq

´ 1
δ , then with probability at least 1 ´ e´n

2
the

random polytope verifies

}T : XLprδnsq Ñ XK} ě β

ˆ

|Bn
2 |

|K|

˙1{n

„
1

?
n|K|

1
n

, (4.18)

for every T P SLpn,Rq.
Hence, by Equations (4.7) and (4.18) and Proposition 3.1.2 (1) we have

?
n ĺ vrpK,Lprδnsqq,

which concludes the proof.

In order to prove Theorem 4.2.9 we will show that any given convex
body can be approximated by another one which fulfils the hypothesis of
the previous proposition. To achieve this we will make use of two deep
and important results in the theory for isotropic convex bodies: Paouris’
result on the concentration of mass and Klartag’s perturbation with uni-
formly bounded isotropic constant (also known as Klartag’s solution to the
isomorphic slicing problem).

Theorem 4.2.5 ([Pao06],Theorem 1.1). There is an absolute constant c ą 0
such that if K Ă Rn is an isotropic convex body, then

Ptx P K : }x}2 ě cLK
?
ntu ď e´

?
nt

for every t ě 1.

Theorem 4.2.6 ([Kla06], Theorem 1.1 ). Let K Ă Rn be a convex body and
let ε ą 0. Then there is a convex body T Ă Rn such that

1. dpK,T q ă 1` ε,

2. LT ă
c?
ε
.

Here c ą 0 is an absolute constant and

dpK,T q “ inftab : a, b ą 0, D x, y P Rn,
1

a
pK ` xq Ă T ` y Ă bpK ` xqu.
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Remark 4.2.7. Given a convex body K Ă Rn there is a convex body
T Ă Rn such that vrpT,Kq „ vrpK,T q „ 1 and LT ď c, where c ą 0 is an
absolute constant.

Indeed, given K, by Theorem 4.2.6 (using ε “ 1) there is T Ă Rn with
LT ď c and dpK,T q ď 2. Notice that if for certain x, y P Rn and a, b ą 0 we
have that 1

apK ` xq Ă T ` y Ă bpK ` xq. Then,

vrpT,Kq ď
|T |

1
n

1
a |K|

1
n

ď ab
|K|

1
n

|K|
1
n

ď ab.

Hence vrpT,Kq ď dpT,Kq, and by symmetry, the same holds for vrpK,T q.

Proposition 4.2.8. For every convex body K Ă Rn there is a convex body
W with vrpW,Kq „ 1 such that

}id : `n2 Ñ XW }
?
n|W |

1
n „ 1. (4.19)

Proof of Proposition 4.2.8. By Remark 4.2.7 and the Rogers-Shephard in-
equality, Theorem 1.2.3, (replacing the body if necessary) we can assume
that K˝ is a centrally symmetric isotropic convex body and LK˝ is uni-
formly bounded.

Consider W such that W ˝ “ K˝ X c
?
nBn

2 , with c ą 0 the absolute

constant in Theorem 4.2.5. This theorem also implies that |W ˝|
1
n ě p1 ´

expp´
?
nqq

1
n ě 1

2 and hence vrpW,Kq „ vrpK˝,W ˝q „ 1.

Since W ˝ Ă c
?
nBn

2 we have that }id : `n2 Ñ XW } “ }id : XW ˝ Ñ

`n2 } ĺ
?
n. Finally, as |W ˝|

1
n „ 1, we have that |W |

1
n „ 1

n (applying the
Blaschke-Santaló/Bourgain-Milman inequality, Theorems 1.2.1 and 1.2.2).
Therefore

}id : `n2 Ñ XW }
?
n|W |

1
n „ 1,

which concludes the proof.

Now we are ready to prove the main result of this chapter. It states that,
given K, if we consider any quantity of vectors m, proportional to n, the
volume ratio between the random polytope Lpmq and K is “large”.

Theorem 4.2.9. Let K Ă Rn be convex body. Given δ ě 1, with probability
greater than or equal to 1´e´n

2
the random polytope Lprδnsq in (4.4) verifies

?
n ĺ vrpK,Lprδnsqq.

In particular,
?
n ĺ lvrpKq.
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Proof. By Proposition 4.2.8 there is W with vrpW,Kq „ 1 such that

}id : `n2 Ñ XW }
?
n|W |

1
n „ 1. (4.20)

Applying Proposition 4.2.4, given δ ě 1, with probability greater than or
equal to 1´ e´n

2
the random polytope Lprδnsq in (4.4) verifies

?
n ĺ vrpW,Lprδnsqq.

Then,

?
n ĺ vrpW,Lprδnsqq ď vrpW,Kq vrpK,Lprδnsqq „ vrpK,Lprδnsqq,

as wanted.

The next corollary can be easily derived from the previous theorem by
duality.

Corollary 4.2.10. Let K Ă Rn be a convex body. Given δ ě 1, there is
polytope Z with 2prδns` nq facets such that

?
n ĺ vrpZprδnsq,Kq.

Proof. By Theorem 4.2.9 there is a polytope L with 2prδns`nq vertices such
that vrpK˝, Lq ľ

?
n. Setting Z :“ L˝ and applying Proposition 3.1.2 (3)

we have that vrpZ,Kq „ vrpK˝, Lq ĺ
?
n. The result follows from the fact

that the polar of the polytope Lprδnsq has 2prδns` nq facets.



Chapter 5

Volume ratio between
projections of convex bodies

In this chapter we are going to study the volume ratio between projections
of two convex bodies. Given K Ă Rn and k „ n we show that there is
another body Z such that the volume ratio between any projection of rank
k of the bodies K and Z is “large”. In order to prove the existence of Z we
are going to proceed similarly as we did in the previous chapter, using the
probabilistic method. Since we need to work with projections of the bodies,
we introduce a Gaussian version of the random polytopes. This allow us
to easily handle the projections involved. We also use an ε-net argument
in order to control the probability for every orthogonal projection of fixed
rank.

5.1 Volume ratio of projections

We will now deal with a variation of the problem we have treated in the
previous chapter. We denote by Pkpnq the set of all orthogonal projections
of rank k in Rn. For a convex body K we have a collection of k-dimensional
convex bodies given by QK Ă Rk for Q P Pkpnq. The problem of estimating
distances (in the sense of equation (4.6)) between projections of convex
bodies had aroused considerable interest (see for example [BS88, Sza90,
ST89]).

For a convex body K with 0 as an interior point and a subspace E Ă

Rn one has that PEpK
˝q “ pE X Kq˝, where PE denotes the orthogonal

projection onto E. Hence, every result concerning projections of K has a
dual version concerning sections of K˝.

It should be mentioned that two convex bodies can be far apart but
they may have their projections or sections quite close. That is the case of
Gluskin’s polytopes defined in the previous chapter. Gluskin proved that,
for m „ n, with high probability the distance between two random polytopes

69
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Figure 5.1: A projection of K and a section K˝.

of m vertices, say Lpmq and L1pmq, is greater than n. Despite this, for any
k proportional to n, for “most of” of the subspaces E Ă Rn of dimension
k we have that dBM pL

pmq X E,L1pmq X Eq ĺ 1. In fact, Szarek [Sza79]
proved that given a convex body K Ă Rn with vrpK,Bn

2 q „ 1, and 0 ă
δ ă 1, “most of” of the subspaces F Ă Rn of dimension k ă δn satisfy that
dBM pK XE,B

k
2 q „ 1. It is easy to verify that for the random polytopes we

have vrpLpmq, Bn
2 q „ 1.

Mankiewicz and Tomczak-Jaegermann [MTJ01] found precise estimates
of the distance between random k-dimensional sections of two convex bodies
in terms of the average distance of a k

2 -dimensional section of each body to
a ball.

In [Rud04], Rudelson studied the problem of estimating extremal dis-
tances between sections and projections of convex bodies. For k ă n, he
defined the distance δkpK,Zq as the minimal Banach-Mazur distance be-
tween k-dimensional projections of K and Z. He was interested in estimat-
ing the diameter of the Banach-Mazur compactum for this “distance”. That
is, finding the asymptotic behaviour of

∆pk, nq :“ sup δkpK,Zq,

where the supremum is taken over all n-dimensional convex symmetric bod-
ies K and Z. He proved that

∆pk, nq „logn

#?
k if k ď n2{3

k2

n if k ą n2{3,

where A „logpnq B means that

1

C loga n
A ď B ď pC loga nqA

for some absolute constants C, a ą 0. In order to obtain this, he proved that
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there are convex bodies K,Z Ă Rn, such that for any k ă n,

δkpK,Zq ľ
k2

n logplogpnqq
,

δkpK,B
n
2 q ľ

d

k

logp1` n
k q
.

We are going to use Rudelson’s approach together with the techniques
developed in the previous chapter in order to tackle the volume ratio problem
for projections. Namely, given K Ă Rn, we are interested in finding a body
Z Ă Rn such that, for every Q P Pkpnq, vrpQK,QZq is “large”. The
following theorem is the main result of this chapter.

Theorem 5.1.1. Given δ ą 0 there is a constant d :“ dpδq ą 0 with the
following property:

for each convex body K Ă Rn and δn ď k ď n, there is a centrally
symmetric body Z Ă Rn such that

vrpQK,QZq ě d

d

k

log log k
,

for every orthogonal projection Q : Rn Ñ Rn of rank k.

Observe that we can also state a dual version of the result.

Corollary 5.1.2. Given δ ą 0 there is a constant d :“ dpδq ą 0 with the
following property:

for each centrally symmetric convex body K Ă Rn and δn ď k ď n, there
is a centrally symmetric body Z Ă Rn such that

vrpE X Z,E XKq ě d

d

k

log log k
,

for every subspace E Ă Rn of dimension k.

Proof. Applying Theorem 5.1.1 for K˝ we have that there is a centrally
symmetric body W such that

vrpQK˝, QW q ě d

d

k

log log k
,

for every orthogonal projection Q : Rn Ñ Rn of rank k. Given E Ă Rn of
dimension k we have that,

d

d

k

log log k
ď vr pPEK

˝, PEW q „ vr ppPEW q
˝q, pPEK

˝q˝q

“ vr pE XW ˝, E XKq ,

since, PEK
˝ “ E X K and PEW “ E XW ˝ the result follows by taking

Z “W ˝.
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Before starting with the proof we recall a standard result in geometric
measure theory,see e.g., [Mat99, Theorem 7.5].

Theorem 5.1.3. If f : Rm Ñ Rn is a Lipschitz map, 0 ď s ď m, and
A Ă Rm, then

HspfpAqq ď LippfqsHspAq,

where Hs and Lippfq are the s-Hausdorff measure and the Lipschitz constant
of f , respectively.

Recall that, for k P N, the k-Hausdorff measure is a multiple of the
Lebesgue measure in Rk. Namely, for every measurable setHkpAq “ 2k

|Bk2 |
|A|.

Given Q P Pkpnq we will denote by |QK| the k-dimensional Lebesgue
measure of QK. As an application of the last theorem we have the following
lemma, that relates the k-dimensional volume of two different projections of
K with their distance in the canonical operator metric.

Lemma 5.1.4. Let P,Q P Pkpnq such that }P ´ Q} ď 1?
n

. For every

centrally symmetric convex body K Ă Rn in John’s position,

1

3
|QK|

1
k ď |PK|

1
k ď 3|QK|

1
k .

Proof. First we will see that

PK Ă 3PQK. (5.1)

Take x P K,

Px “ PQx` P px´Qxq

“ PQx` P px´ Pxq ` P pPx´Qxq

“ PQx` P pP ´Qqx.

Thus, to prove (5.1) it is sufficient to show that

P pP ´Qqx P 2PQK. (5.2)

It is easy to see that the operator P coincides with I ` P ´ Q on QRn
(the image of the projection Q). Since }P ´Q} ď 1?

n
, then

P |QRn : QRn Ñ PRn

is invertible and its inverse S :“ pP |QRnq
´1 “

ř8
k“0pQ´ P q

k satisfies

}S} ď
1

1´ 1?
n

ď 2.



5.2. GAUSSIAN POLYTOPES 73

Note that PBn
2 Ă 2PQBn

2 . Indeed, by the previous estimate about the norm
of S we have SPBn

2 Ă 2QBn
2 and so, applying P , we get PSPBn

2 “ PBn
2 Ă

2PQB2.
Since K Ă

?
nBn

2 (K is in John’s position) we get that pP ´Qqx Ă Bn
2

and
P pP ´Qqx P PBn

2 Ă 2PQBn
2 Ă 2PQK.

This shows (5.2), which as we mentioned implies (5.1).
To finish the proof, with equation (5.1) at hand, we just apply Theorem

5.1.3 with m :“ n, s :“ k, f :“ P and A :“ QK to obtain

|PK|
1
k ď 3|PQK|

1
k ď 3|QK|

1
k ,

using that the Lipschitz constant of the mapping P is obviously one and
simplifying the constants to pass from Hausdorff to Lebesgue measure.

5.2 Gaussian polytopes

We now define a variant of the Gluskin’s random polytopes defined in Sec-
tion 4.2. Instead of considering the absolute convex hull of points taken
uniformly on the unit sphere we are going to work with Gaussian random
vectors. The reason for doing this is that we want to deal with projections
of these bodies, and the Gaussian measure is more suitable for this purpose.
Let N ą n and g1, . . . , gN be standard independent Gaussian vectors in Rn.
We define the symmetric polytope

ZN “ ZN pωq “ absconvt
?
ne1, . . . ,

?
nen, g1, . . . , gNu.

We are going to need the following lemma regarding the euclidean norm of
a Gaussian vector.

Lemma 5.2.1. Let g be a standard Gaussian vector. Then, there are con-
stants C, c ą 0 such that 1 ď }g}2 ď C

?
n with probability at least 1´ e´cn.

Proof. Bounding the gaussian density by p2πq´
n
2 . We have

P t}g}2 ă 1u ď
|Bn

2 |

p2πq
n
2

“

`

2Γp1` 1
2q
˘n

p2πq
n
2 Γp1` n

2 q
,

applying Stirling’s formula and choosing an appropriate constant c1 ą 0 we
have,

P t}g}2 ě 1u ě 1´ e´c1n. (5.3)

Now, if g “ pg1, . . . , gnq we want to bound,

P

$

&

%

˜

n
ÿ

i“1

g2
i

¸1{2

ě C
?
n

,

.

-

“ P
!

e
1
4p

řn
i“1 g

2
i q ě eC

1
4
n
)

.
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Appyling Markov’s inequality,

P
!

e
1
4p

řn
i“1 g

2
i q ě e

1
4
Cn

)

ď e´
1
4
Cnp2πq´

n
2

ż

Rn
e
}x}2

4 e´
}x}2

2 dx

“ e´
1
4
Cn

ˆ

p2πq´
1
2

ż

R
e´

1
4
t2dt

˙n

.

If we compute the right hand integral and choose an appropriate constant
c2 ą 0 we have,

P

$

&

%

˜

n
ÿ

i“1

g2
i

¸1{2

ě C
?
n

,

.

-

ď 1´ e´c2n. (5.4)

Finally we use the union bound to combine (5.3) and (5.4).

A consequence of the last lemma is that the set

Ω0 :“ tω|Bn
2 Ă ZN pωq Ă C

?
nBn

2 u

satisfies

PpΩ0q ě 1´Ne´cn. (5.5)

To estimate the volume of projections of ZN recall that, by Lemma 3.2.1,
if v1, . . . , vN are vectors in Rm of lenght at most one then,

| absconvtv1, . . . , vNu|
1{m ď c

a

logp1`N{mq

m
.

Thus, for each w P Ω0 and Q P Pkpnq we have

|QZN pwq|
1{k ď C

a

n logp1`N{kq

k
. (5.6)

We will now prove a series of lemmas that are similar to the ones that we
stated in Section 4.1. Given a finite dimensional normed space X, we denote
by SpXq the set of all linear operators T : X Ñ X of determinant one.

Lemma 5.2.2. Let K Ă Rn a centrally symmetric convex body, Q0 P Pkpnq
and T0 P SpQ0Rnq fixed. For A ą 0 we have

Ptω P Ω0 : }T0 : XQ0ZN pωq Ñ XQ0K} ď Au ď CkNAkN |Q0K|
N .

Proof. Observe that

tω P Ω0 : T0Q0pZN pωqq Ă AQ0Ku “ tω P Ω0 : Q0ZN pωq Ă AT´1
0 pQ0Kqu

Ă tω P Ω0 : Q0gipωq P AT
´1
0 pQ0Kq for all 1 ď i ď Nu.



5.2. GAUSSIAN POLYTOPES 75

Using the rotational invariance of the measure and the fact that T0 preserves
measure (it has determinant one), we have

Ptω P Ω0 : }T0 : XQ0ZN pωq Ñ XQ0K} ď Au

ď Ptω P Ω0 : Q0g1pωq P AT
´1
0 Q0Ku

N

“

ˆ
ż

Rn
1AT´1

0 Q0K
pQ0xqdγkpxq

˙N

“

ˆ
ż

Rk
1AT´1

0 Q0K
pyqdγnpyq

˙N

ď
1

p
?

2πqkN
p|AT´1

0 Q0K|
kqN

ďCkNAkN |Q0K|
N .

This concludes the proof.

Lemma 5.2.3. Let K Ă Rn be a centrally symmetric convex body, Q0 P

Pkpnq a fixed orthogonal projection of rank k and A ą 0, then

Ptω P Ω0 : DT P SpQ0Rnq and }T : XQ0ZN pωq Ñ XQ0K} ď Au

ď pc
?
nqk

2
CNkANk|Q0K|

N .

Proof. Let U :“ BLp`k2 ,XQ0K
q the unit ball of Lp`k2, XQ0Kq, and consider N

a maximal set A?
n

- separated in AU XSLpk,Rq for the metric } }Lp`k2 ,XQ0K
q.

Therefore we have the following inclusion for the disjoint union

ď

ηPN
pη `

A

2
?
n
Uq Ă p1`

1

2
?
n
qAU.

Identifying the space with Rk2 and taking measure we conclude that

#N ď pc
?
nqk

2
.

Take ω P Ω0 such that there is T P SpQoRnq with }T : XQ0ZN pωq Ñ

XQ0K} ď A. Since Bn
2 Ă ZN pωq we have that T P AU , so there is S P N

such that

}S ´ T : `k2 Ñ XQ0K} ď
A
?
n
.

Then,

}S : XQ0ZN pωq Ñ XQ0K} ď }S ´ T : XQ0ZN pωq Ñ XQ0K} ` }T : XQ0ZN pωq Ñ XQ0K}

ď
?
n}S ´ T : `k2 Ñ XQ0K} `A

ď 2A.
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This shows

tω P Ω0 : DT P SpQ0Rnq and }T : XQ0ZN pωq Ñ XQ0K} ď Au

Ă
ď

SPN
tS : }S : `k2 Ñ XQ0K} ď 2Au.

Taking measure and applying Lemma 5.2.2 we obtain the desired bound.

We will need the following result about ε-nets due to Szarek [Sza82].

Lemma 5.2.4. Let 0 ă ε ă 1. The set Pkpnq admits an ε-net Π of cardi-
nality

|Π| ď

ˆ

C

ε

˙nk

.

Given a basis B “ tv1, . . . , vku of a vector space F and a vector x P F
we denote by pxqB the coordinates of x in the basis B. That is, pxqB “
pα1, . . . , αkq if x “

řk
i“1 αivi. Also for an operator T : F Ñ F we denote

by rT sB the matrix pai,jq1ďi,jďk such that T pvlq “
řk
i“1 ai,lvi, for every

1 ď l ď k (i.e., the l-column of rT sB is pTvlq
t
B).

Lemma 5.2.5. Given a centrally symmetric convex body K Ă Rn and β ą 0
we have

Ptω P Ω0| DQ P Pkpnq, DT P SpQRnq such that }T : XQZN pωq Ñ XQK} ď
β

|QK|
1
k

u

ď pc1

?
nqnkpc2

?
nqk

2
ckN3 βkN .

Proof. Assume that K is in John’s position. By the previous lemma there
is a 1?

n
-net for Pkpnq of cardinality #Π ď pc1

?
nqnk. In order to prove the

result we need to show that
#

ω P Ω0|DQ P Pkpnq, DT P SpQRnq such that }T : XQZN pωq Ñ XQK} ď
β

|QK|
1
k

+

Ă
ď

Q0PΠ

#

ω P Ω0|DS P SpQ0Rnq such that }S : XQ0ZN pωq Ñ XQ0K} ď C
β

|Q0K|
1
k

+

.

The bound follows by applying Lemma 5.2.3.
Let ω P Ω0 such that there is Q P Pkpnq and T P SpQRnq with

}T : XQZN pωq Ñ XQK} ď
β

|QK|
1
k

.

Take Q0 P Π such that }Q ´ Q0} ď
1?
n

. Fix and orthonormal basis B “

tv1, . . . , vku ofQRn. It is easy to see that the collection B̃ “ tQ0v1, . . . , Q0vku
is a basis of Q0Rn. Define S such that rSsB̃ “ rT sB, so S P SpQ0Rnq.
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We now show that

}S : XQ0ZN pωq Ñ XQ0K} ď C
β

|QK|
1
k

. (5.7)

Indeed, take x P ZN pωq,

SQ0x “ SQ0pQ0x´Qxq
looooooooomooooooooon

p1q

`SQ0Qx
loomoon

p2q

.

We must see that the terms p1q and p2q belong to C β

|QK|
1
k
Q0K.

To see that the term p2q, SQ0Qx, is in C β

|QK|
1
k
Q0K, write Qx “

ř

αivi,

so Q0Qx “
ř

αiQ0vi. We have,

pSQ0Qxq
t
B̃
“ rT sBpQ0Qxq

t
B̃

“ rT sBpQxq
t
B

“ pTQxqtB.

Hence, SQ0Qx “ Q0TQx. Since x P ZN pωq, TQx P
β

|QK|
1
k
QK and then

Q0TQx P
β

|QK|
1
k
Q0QK. Now notice that if we assume that K is in John’s

position (hence Bn
2 Ă K Ă

?
nBn

2 ), we have that Q0QK Ă 2Q0K. This is
because

Q0QK ĂQ0K `Q0ppQ´Q0qKq

ĂQ0K `Q0ppQ´Q0q
?
nBn

2 q

ĂQ0K `Q0K

“2Q0K.

Now we are going to prove that the term p1q, SQ0pQ0x ´ Qxq, is in
C β

|QK|
1
k
Q0K. Since ZN pωq Ă

?
nBn

2 , pQ0 ´ Qqx P Bn
2 and then Q0pQ0 ´

Qqx P Bk
2 . We need to see that }S : `k2 Ñ XQ0K} ď C β

|QK|
1
k

.

Take y P Q0Rn with }y}2 “ 1. We write pyqB̃ “ pβ1, . . . , βkq and pSyqB̃ “
pγ1, . . . , γkq. Then,

pγ1, . . . , γkq “: rSysB̃ “rT sBpβ1, . . . , βkq
t

“rT p
ÿ

βiviqsB.

Notice that

}
ÿ

βivi}2 ď}
ÿ

βiQvi ´
ÿ

βiQ0vi}2 ` }
ÿ

βiQ0vi}2

ď
1
?
n
}
ÿ

βivi}2 ` 1,
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so,
ˆ

1´
1
?
n

˙

}
ÿ

βivi}2 ď 1

}
ÿ

βivi}2 ď
1

1´ 1?
n

ď 2.

Then, T p
ř

βiviq P
2β

|QK|
1
k
QK. On the other hand,

Sy “
ÿ

γiQ0vi “ Q0p
ÿ

γiviq “ Q0T p
ÿ

βiviq.

So we have that Sy P 2β

|QK|
1
k
Q0QK Ă

4β

|QK|
1
k
Q0K. The result now follows

because |QK|
1
k „ |Q0K|

1
k , using Lemma 5.1.4.

We are now ready to prove our main result.

Proof. (of Theorem 5.1.1) By the Roger-Shephard inequality we know that
vrpL ´ L,Lq ď 4, for every convex body L Ă Rn. Therefore, since QpK ´

Kq “ QpKq ´QpKq, for every Q P Pkpnq we have that

vrpQpK ´Kq, Zq ď vrpQpK ´Kq, QKq vrpQK,Zq ď 4 vrpQK,Zq.

So, if vrpQpK ´Kq, Zq is large so is vrpQK,Zq. So we can suppose without
loss of generality, from now on that K is centrally symmetric.

By Lemma 5.2.5 we know that

Ptω P Ω0|DQ P Pkpnq,DT P SpQRnq }T : XQZN pωq Ñ XQK} ď
β

|QK|
1
k

u

ď pc1

?
nqnkpc2

?
nqk

2
ckN3 βkN . (5.8)

Let N “ n logpnq and fix β small enough so that the probability in (5.8)
tends to zero. Hence, since PpΩ0q ě 1 ´ Ne´cn (Equation (5.5)), we know
there is ω P Ω0 such that for every Q P Pkpnq and T P SpQRnq,

}T : XQZN pωq Ñ XQK} ě
β

|QK|
1
k

.

If we compute the volume ratio between projections of Z :“ ZN pωq and K
we get, using that δn ď k ď n, Proposition 3.1.2 (1) and equation (5.6),

vrpQK,QZq ě
β

|QK|
1
k

|QK|
1
k

|QZ|
1
k

ě
βk

C
a

n logp2`N{kq

ědpδq

?
k

a

log logpkq
,
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which concludes the proof of the main theorem.
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[Gro18] Wilhelm Gross. Über affine geometrie xiii: Eine minimumeigen-
schaft der ellipse und des ellipsoids. Ber. Verh. Sächs. Akad.
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