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In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold

tensor norms. These are norms obtained from the projective norm by some natural op-

erations. We prove that there are exactly six natural symmetric tensor norms for n � 3,

a noteworthy difference with the 2-fold case in which there are four. We also describe the

polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric

version of a result of Carne, we establish which natural symmetric tensor norms preserve

the Banach algebra structure.
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1. Introduction

Alexsander Grothendieck’s “Résumé de la théorie métrique des produits tensoriels topologiques” [15] is considered one of the

most influential papers in functional analysis. In this masterpiece, Grothendieck created the basis of what was later known

as ‘local theory’, and exhibited the importance of the use of tensor products in the theory of Banach spaces and operator

ideals. As part of his contributions, the Résumé contained the list of all natural tensor norms. Loosely speaking, these norms

come from applying a finite number of natural operations to the projective tensor norm. They are obtained by dualization,

transposition and by taking left/right projective and injective associates in some order (see Sections 15 and 20 in [7]).

Grothendieck proved that there were at most fourteen possible natural norms, but he did not know the exact dominations

among them, or if there was a possible reduction on the table of natural norms (this was, in fact, one of the open problems

posed in the Résumé). This was solved, several years later, thanks to very deep ideas of Gordon and Lewis [14]. All these

results are now classical and can be found for example in [7, Section 27] and [8, 4.4.2]. It must be pointed out that one of

the strengths of Grothendieck’s result is that most of his fourteen tensor norms (at least ten) are really natural, since they

turn out to be equivalent to the most relevant tensor norms: those related to the ideals of bounded, integral, absolutely r-

summing (r = 1,2), r-factorable (r = 1,2,∞) and 2-dominated operators. These tensor norms appear naturally in the theory

by their own interest, and it is a remarkable thing that they can be obtained from the projective norm by means of the

natural operations introduced by Grothendieck.

Motivated by the increasing interest in the theory of symmetric tensor products, we introduce and study natural s-tensor

norms of arbitrary order. These are tensor norms defined on symmetric tensor products of Banach spaces which are natural

in the following sense: they are obtained from the symmetric projective tensor norm by natural operations (dualization

and taking projective and injective associates, see Definition 4.1 below). Among the fourteen non-equivalent natural 2-fold

tensor norms, there are exactly four which are symmetric. The s-tensor version of these four tensor norms are, as expected,

the only natural ones for symmetric 2-fold tensor products. One of our main results (Theorem 4.2) shows that for n � 3
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we have actually six natural s-tensor norms, a noteworthy difference with the 2-fold case. What we do not have in the

n-fold case is the double sense of the word ‘natural’: at most three among the six obtained tensor norms can be considered

really natural, if by natural we understand those symmetric tensor norms that naturally appear in the theory. These are

the symmetric projective and injective tensor norms and (arguably) the so-called tensor norm η, which appears in relation

to extension of polynomials. We then stress that, throughout the article, by natural we just mean those symmetric tensor

norms which are obtained from the projective one by the already mentioned operations. In Theorem 4.2 we also describe

the maximal ideals of polynomials associated to the six natural norms. For this, we study the adjoint of a composition

ideal (Proposition 3.3) and give, in Theorem 3.1, a characterization of the maximal polynomial ideals associated to the

injective/projective associates of an s-tensor norm.

The 2-fold tensor norm w ′
2 is one of the fourteen Grothendieck’s natural tensor norms, since it is equivalent to \ε2/ (see

[7, 20.17]). In fact, it is also equivalent to \/π2\/. The same equivalence holds for the analogous 2-fold s-tensor norms but,

when we pass to n-fold tensor products with n � 3, the s-tensor norms \/πn,s\/ and \εn,s/ are no longer equivalent. They

are not only non-equivalent as tensor norms: we show in Theorem 4.6 that these norms do not coincide in the symmetric

tensor product of any infinite dimensional normed space (the same holds for the norms /πn,s\ and /\εn,s/\). In other

words, we can say that w ′
2 splits into two completely different s-tensor norms when passing to tensor products of order

n � 3. One may wonder which of these s-tensor norms of high order is the most natural extension of the 2-fold symmetric

analogue of w ′
2. We will see that, surprisingly, two characteristic properties of w ′

2 are, in a sense, a consequence of it being

equivalent to \/π2,s\/ rather than to the most simple \ε2,s/. The first property we consider is the relationship with its

adjoint s-tensor norm. The second is related to the preservation of the Banach algebra structure.

Carne showed in [6] that there are exactly four natural 2-fold tensor norms that preserve the Banach algebra structure,

two of which are symmetric: π2 and w ′
2 ∼ \ε2/. Based on his work we establish in Section 5 which natural s-tensor norms

preserve the Banach algebra structure. We show that these are πn,s and \/πn,s\/. Thus, one may think that \/πn,s\/ is the

natural extension of the symmetric analogue of w ′
2 to tensor norms of higher orders.

All our results on s-tensor norms have their analogues for symmetric tensor norms on full tensor products. We chose to

present the results for symmetric tensor products because in the full case proofs are similar and sometimes simpler.

We refer to [7] for the theory of 2-fold tensor norms and operator ideals, and to [9,10,12,13] for symmetric and full

tensor products and polynomial ideals.

2. Preliminaries

In this section we recall some definitions and results on the theory of symmetric tensor products and Banach polynomial

ideals.

Let εn,s and πn,s stand for the injective and projective symmetric tensor norms of order n respectively. We say that β

is an s-tensor norm of order n if β assigns to each Banach space E a norm β( . ;⊗n,s E) on the n-fold symmetric tensor

product ⊗n,s E such that

(1) εn,s � β � πn,s on ⊗n,s E .

(2) ‖ ⊗n,s T : ⊗n,s
β E → ⊗n,s

β F‖ � ‖T‖n for each operator T ∈ L(E, F ).

The second property is usually referred to as the metric mapping property, and it can be seen that the inequality is actually

an equality. The s-tensor norm β is said to be finitely generated if for all E ∈ BAN (the class of all Banach spaces) and

z ∈ ⊗n,s E

β
(
z,⊗n,s E

) = inf
{
α

(
z,⊗n,sM

)
: M ∈ FIN(E), z ∈ ⊗n,sM

}
,

where FIN(E) denotes the class of all finite dimensional subspaces of E . In this article we will only work with finitely

generated tensor norms and, therefore, all tensor norms will be assumed to be so.

For β an s-tensor norm of order n, its dual tensor norm β ′ is defined on FIN by

⊗n,s
β ′ M

1:= (⊗n,s
β M ′)′

and extended to BAN as

β ′(z,⊗n,s E
) := inf

{
β ′(z,⊗n,sM

)
: M ∈ FIN(E), z ∈ ⊗n,sM

}
.

In other words, it is extended to BAN in the unique way that makes it finitely generated.

Similarly, a tensor norm α of order n assigns to every n-tuple of Banach spaces (E1, . . . , En) a norm α( . ;⊗n
i=1 Ei) on

the n-fold (full) tensor product
⊗n

i=1 Ei such that

(1) εn � α � πn on
⊗n

i=1 Ei .

(2) ‖⊗n
i=1 Ti : (⊗n

i=1 Ei,α) → (
⊗n

i=1 Fi,α)‖ � ‖T1‖ · · · ‖Tn‖ for each set of operators Ti ∈ L(Ei, Fi), i = 1, . . . ,n.

Here, εn and πn stand for the injective and projective full tensor norms of order n respectively.
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We often call these tensor norms “full tensor norms”, in the sense that they are defined on the full tensor product, to

distinguish them from the s-tensor norms, that are defined on symmetric tensor products. The full tensor norm α is finitely

generated if for all Ei ∈ BAN and z in
⊗n

i=1 Ei

α

(
z,

n⊗
i=1

Ei

)
:= inf

{
α

(
z,

n⊗
i=1

Mn

)
: Mi ∈ FIN(Ei), i = 1, . . . ,n, z ∈

n⊗
i=1

Mi

}
.

If α is a full tensor norm of order n, then the dual tensor norm α′ is defined on FIN by(
n⊗

i=1

Mi,α
′
)

: 1=
[(

n⊗
i=1

M ′
i,α

)]′

and on BAN by

α′
(
z,

n⊗
i=1

Ei

)
:= inf

{
α′

(
z,

n⊗
i=1

Mn

)
: Mi ∈ FIN(Ei) (i = 1, . . . ,n), z ∈

n⊗
i=1

Mi

}
.

Let us recall some definitions on the theory of Banach polynomial ideals [12]. A Banach ideal of continuous scalar valued

n-homogeneous polynomials is a pair (Q,‖ · ‖Q) such that:

(i) Q(E) = Q ∩ Pn(E) is a linear subspace of Pn(E) and ‖ · ‖Q(E) (the restriction of ‖ · ‖Q to Q(E)) is a norm which makes

(Q,‖ · ‖Q(E)) a Banach space.

(ii) If T ∈ L(E1, E), p ∈ Q(E) then p ◦ T ∈ Q(E1) and

‖p ◦ T‖Q(E1) � ‖P‖Q(E)‖T‖n.
(iii) z �→ zn belongs to Q(K) and has norm one.

Let (Q,‖ · ‖Q) be the Banach ideal of continuous scalar valued n-homogeneous polynomials and, for p ∈ Pn(E), define

‖p‖Qmax(E) := sup
{‖p|M‖Q(M): M ∈ FIN(E)

} ∈ [0,∞].
The maximal hull of Q is the ideal given by Qmax := {p ∈ Pn: ‖p‖Qmax < ∞}. An ideal Q is said to be maximal if Q 1= Qmax .

Also, for q ∈ Pn we define

‖q‖Q∗ := sup
{∣∣〈q|M , p〉∣∣M ∈ FIN(E), ‖p‖Q(M ′) � 1

} ∈ [0,∞].
We will denote Q∗ the class of all polynomials q such that ‖q‖Q∗ < ∞.

The s-tensor norm γ associated to the Banach polynomial ideal Q is the unique (finitely generated) tensor norm satisfying

Q(M)
1= ⊗n,s

γ M,

for every finite dimensional space M . The polynomial representation theorem asserts that, if Q is maximal, then we have

Q(E)
1= (⊗̃n,s

γ ′ E
)′
,

for every Banach space E [13, 3.2]. It is not difficult to prove that (Q∗,‖ ‖Q∗) is a maximal Banach ideal of continuous

n-homogeneous polynomials. Moreover, if γ is the s-tensor norm associated to the ideal Q then γ ′ is the one associated to

Q∗ and we have

Q∗(E)
1= (⊗̃n,s

γ E
)′
.

We will sometimes denote by Qβ the maximal Banach ideal of β-continuous n-homogeneous polynomials, that is,

Qβ(E) := (⊗̃n,s
β E)′ . We observe that, with this notation, Qβ is the unique maximal polynomial ideal associated to the s-

tensor norm β ′ .
Let (A,‖ ‖A) be a Banach ideal of operators. The composition ideal Q ◦ A is defined in the following way: a polynomial

p belongs to Q ◦ A if it admits a factorization

E
p

T

K

F

q (1)
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where F is a Banach space, T ∈ A(E, F ) and q is in Q(F ). The composition quasi-norm is given by ‖p‖Q◦A :=
inf{‖q‖Q‖T‖nA}, where the infimum runs over all possible factorizations as in (1). When the quasi-norm ‖ ‖Q◦A is ac-

tually a norm, (Q ◦ A,‖ ‖Q◦A) forms a Banach ideal of continuous polynomials. All the composition ideals that will be of

interest to us in the sequel are normed.

Let us now introduce the notion of quotient ideal. For p ∈ Pn we define

‖p‖Q◦A−1 := sup
{‖p ◦ T‖Q: T ∈ A, ‖T‖A � 1, P ◦ T is defined

} ∈ [0,∞].
We will denote by Q ◦ A−1 the class of all polynomials p such that ‖p‖Q◦A−1 < ∞. It is not difficult to prove that (Q ◦
A−1,‖ ‖Q◦A−1) is Banach ideal of continuous n-homogeneous polynomials with the property that p ∈ Q ◦ A−1 if and only

if p ◦ T ∈ Q for all T ∈ A. In other words, Q ◦ A−1 is the largest ideal satisfying (Q ◦ A−1) ◦ A ⊂ Q.

By Pn
f
we will denote the class of finite type polynomials. We say that a polynomial ideal Q is accessible if the following

condition holds: for every Banach space E , q ∈ Pn
f
(E) and ε > 0, there is a closed finite codimensional space L ⊂ E and

p ∈ Pn(E/L) such that q = p ◦ Q E
L (where Q E

L is the canonical quotient map) and ‖p‖Q � (1 + ε)‖q‖Q.

Let M be a finite dimensional Banach space. For p ∈ Pn(M) and q ∈ Pn(M ′), we denote by 〈q, p〉 the trace-duality of

polynomials, defined for p = (x′)n and q = xn as

〈p,q〉 = x′(x)n,
and extended by linearity [9, 1.13].

Finally, a surjective mapping T : E → F is called a metric surjection if∥∥Q (x)
∥∥
F

= inf
{‖y‖E : Q (y) = x

}
,

for all x ∈ E . As usual, a mapping I : E → F is called isometry if ‖Ix‖F = ‖x‖E for all x ∈ E . We will use the notation
1� and

1
↪→ to indicate a metric surjection or an isometry, respectively. We also write E

1= F if E and F are isometrically isomorphic

Banach spaces (i.e. there exists a surjective isometry I : E → F ). For a Banach space E with unit ball BE , we call the mapping

Q E : 	1(BE )
1
� E given by

Q E

(
(ax)x∈BE

) =
∑
x∈BE

axx (2)

the canonical quotient mapping. Also, we consider the canonical embedding I E : E → 	∞(BE ′ ) given by

I E(x) = (
x′(x)

)
x′∈BE′ . (3)

3. Projective and injective associates of an s-tensor norm

In this section we will define the projective and injective associates of an s-tensor norm and describe their associated

maximal Banach ideals of polynomials.

The projective and injective associates (or hulls) of β will be denoted, by extrapolation of the 2-fold full case, as \β/

and /β\ respectively. The projective associate of β will be the (unique) smallest projective tensor norm greater than β .

Following some ideas from [7, Theorem 20.6] we have

⊗n,s Q E :⊗n,s
β 	1(E)

1
� ⊗n,s

\β/E,

where Q E : 	1(BE ) � E is the canonical quotient map defined in (2).

The injective associate of β will be the (unique) greatest injective tensor norm smaller than β . As in [7, Theorem 20.7]

we get

⊗n,s I E :⊗n,s
/β\E

1
↪→ ⊗n,s

β 	∞(BE ′),

where I E is the canonical embedding (3).

The projective and injective associates for a full tensor norm α can be defined in a similar way and satisfy(
n⊗

i=1

	1(Ei),α

)
1
�

(
n⊗

i=1

Ei,\α/

)
,

(
n⊗

i=1

Ei, /α\
)

1
↪→

(
n⊗

i=1

	∞(BE ′
i
),α

)
.

The following duality relations for an s-tensor norm β or a full tensor norm α can be obtained proceeding as in [7,

Proposition 20.10]:

(/β\)′ = \β ′/, (\β/)′ = /β ′\, (/α\)′ = \α′/, (\α/)′ = /α′\. (4)
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Just as in [7, Corollary 20.8], if E is an L1,λ space for every λ > 1, then β and \β/ coincide (isometrically) on ⊗n,s E .

On the other hand, if E is an L∞,λ space for every λ > 1, then β and /β\ coincide in ⊗n,s E . A similar result holds for full

tensor norms: if E1, . . . , En are L1,λ spaces for every λ > 1 then α and \α/ are equal on
⊗n

i=1 Ei . On the other hand, if

E1, . . . , En are L∞,λ spaces for every λ > 1 then α and /α\ coincide in
⊗n

i=1 Ei .

It is not difficult to prove that an n-homogeneous polynomial p belongs to Q\β/(E) if and only if p ◦ Q E ∈ Qβ(	1(BE )).

Moreover,

‖p‖Q\β/(E) = ‖p ◦ Q E‖Qβ (	1(BE )). (5)

On the other hand, an n-homogeneous polynomial p belongs to Q/β\(E) if and only if there exists an n-homogeneous

polynomial p ∈ Qβ(	∞(BE ′ )) such that p ◦ I E = p and

‖p‖Q/β\(E) = ‖p‖Qβ (	∞(BE′ )). (6)

In other words, /β\-continuous polynomials are those that can be extended to β-continuous polynomials on 	∞(BE ′ ) (or

any larger space containing E). As a consequence, the injective associate of the projective s-tensor norm, /πn,s\, is the

predual norm of the ideal of extendible polynomials. Recall that a polynomial p ∈ Pn is extendible [16] if for any Banach

space G containing E there exists p̃ ∈ Pn(G) an extension of p. The Banach polynomial ideal of all extendible polynomials

is denoted by Pn
e (E). For p ∈ Pn

e (E), its extendible norm is given by

‖P‖Pn
e (E) = inf{C > 0: for all G ⊃ E there is an extension of P to G with norm � C}.

The norm /πn,s\ usually appears in the literature denoted by η (see [2], and also [16], where this norm is constructed in a

different way).

The description of the n-linear forms belonging to (
⊗n

i=1 Ei,\α/)′ or to (
⊗n

i=1 Ei, /α\)′ is analogous to that for polyno-

mials.

The following result describes the maximal Banach ideal of polynomials associated to the projective/injective associates

of an s-tensor norm in terms of composition ideals.

Theorem 3.1. Let β be an s-tensor norm of order n. We have the following identities:

Q/β\
1= Qβ ◦ L∞ and Q\β/

1= Qβ ◦ (L1)
−1.

To prove this, we will need a polynomial version of the Cyclic Composition Theorem [7, Theorem 25.4].

Lemma 3.2. Let (Q1,‖ ‖Q1
), (Q2,‖ ‖Q2

) be two Banach ideals of continuous n-homogeneous polynomials and (A,‖ ‖A) a Banach

operator ideal with (Adual,‖ ‖Adual) right-accessible. If

Q1 ◦ A ⊂ Q2,

with ‖ ‖Q2
� k‖ ‖Q1 ◦ A for some positive constant k, then we have

Q∗
2 ◦ Adual ⊂ Q∗

1,

and ‖ ‖Q∗
1
� k‖ ‖Q∗

2◦Adual .

Proof. Fix q ∈ Q∗
2 ◦ Adual(E), M ∈ FIN(E) and p ∈ Q1(M

′) with ‖p‖Q1(M′) � 1. For ε > 0, we take T ∈ Adual(E, F ) and

q1 ∈ Q∗
2(F ) such that q = q1 ◦ T and

‖q1‖Q∗
2
‖T‖n

Adual � (1+ ε)‖q‖Q∗
2◦Adual .

Since (Adual,‖ ‖Adual) is right-accessible, by definition [7, 21.2] there are N ∈ FIN(F ) and S ∈ Adual(M,N) with ‖S‖Adual �
(1+ ε)‖T |M‖Adual � (1+ ε)‖T‖Adual satisfying

M
T |M

S

F

N

iN (7)

Thus, since the adjoint S∗ of S belongs to A(N ′,M ′), we have



D. Carando, D. Galicer / J. Math. Anal. Appl. 387 (2012) 568–581 573∣∣〈q|M , p〉∣∣ = ∣∣〈q1 ◦ T |M , p〉∣∣ = ∣∣〈q1 ◦ iN ◦ S, p〉∣∣ = ∣∣〈q1 ◦ iN , p ◦ S∗〉∣∣ � ‖q1 ◦ iN‖Q∗
2

∥∥p ◦ S∗∥∥Q2

� k‖q1‖Q∗
2

∥∥p ◦ S∗∥∥Q1◦A
� k‖q1‖Q∗

2
‖p‖Q1

∥∥S∗∥∥n

A
� k‖q1‖Q∗

2
‖S‖n

Adual � k(1 + ε)n‖q1‖Q∗
2
‖T‖n

Adual

� k(1 + ε)n+1‖q‖Q∗
2◦Adual .

This holds for every M ∈ FIN(E) and every p ∈ Q1(M
′) with ‖p‖Q1(M′) � 1, thus q ∈ Q∗

1 and ‖q‖Q∗
1
� k(1 + ε)‖q‖Q∗

2◦Adual .

Since ε > 0 is arbitrary we get ‖q‖Q∗
1
� k‖q‖Q∗

2 ◦ Adual . �
Notice that the condition of (Adual,‖ ‖Adual) being right-accessible is fulfilled whenever (A,‖ ‖A) is a maximal left-

accessible Banach ideal of operators [7, Corollary 21.3].

Proposition 3.3. Let (Q,‖ ‖Q) be a Banach ideal of continuous n-homogeneous polynomials and (A,‖ ‖A) a Banach ideal of opera-

tors. If A is maximal and accessible (or A and Adual are both right-accessible), and Q ◦ A is a Banach ideal of continuous polynomials,

then

(Q ◦ A)∗ 1= Q∗ ◦ (
Adual

)−1
.

Proof. Lemma 3.2 applied to the inclusion Q ◦ A ⊂ Q ◦ A implies that (Q ◦ A)∗ ◦ Adual ⊂ Q∗ . Therefore, (Q ◦ A)∗ ⊂ Q∗ ◦
(Adual)−1 and ‖ ‖Q∗◦(Adual)−1 � ‖ ‖(Q◦A)∗ .

For the reverse inclusion we proceed similarly as in proof of Lemma 3.2. Fix q ∈ Q∗ ◦ (Adual)−1(E), M ∈ FIN(E) and

p ∈ Q ◦A(M ′) with ‖p‖Q◦A(M′) � 1. For ε > 0, we take T ∈ A(M ′, F ) and p1 ∈ Q(F ) such that p = p1 ◦ T and ‖p1‖Q‖T‖nA �
(1+ ε). Since (A,‖ ‖A) is accessible, there are N ∈ FIN(F ) and S ∈ A(M ′,N) with

‖S‖Adual � (1+ ε)‖T |M‖Adual � (1+ ε)‖T‖A

satisfying T |M = iN ◦ S . Note that S∗ ∈ Adual and ‖S∗‖Adual � (1 + ε)‖T‖A . Thus, q|M ◦ (S)∗ ∈ Q∗ and ‖q|M ◦ (S)∗‖Q∗ �
(1+ ε)n‖q‖Q∗◦(Adual)−1‖T‖nA . Now we have:∣∣〈q|M , p〉∣∣ = ∣∣〈q|M , p1 ◦ T 〉∣∣ = ∣∣〈q|M , p1 ◦ iN ◦ S〉∣∣ �

∣∣〈q|M ◦ S∗, p1 ◦ iN
〉∣∣ �

∥∥q|M ◦ S∗∥∥Q∗‖p1 ◦ iN‖Q

� (1+ ε)n‖q‖Q∗◦(Adual)−1 ‖p1‖Q‖T‖nA � (1+ ε)n+1‖q‖Q∗◦(Adual)−1 .

This holds for every M ∈ FIN(E), every p ∈ Q ◦ A(M ′) with ‖p‖Q◦A(M′) � 1 and every ε > 0. As a consequence, q ∈ (Q ◦ A)∗
and ‖q‖(Q◦A)∗ � ‖q‖Q∗◦(Adual)−1 . �

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. We have already mentioned that any p ∈ Q/β\(E) extends to a polynomial p defined on 	∞(BE ′ )
with ‖p‖Qβ (	∞(BE′ )) = ‖p‖Q/β\(E) . Therefore, p belongs to Qβ ◦ L∞ and

‖p‖Qβ◦L∞ � ‖p‖Qβ (	∞(BE′ ))‖i‖n = ‖p‖Q/β\(E).

On the other hand, for p ∈ Qβ ◦ L∞ and ε > 0 we can take T ∈ L∞(E, F ) and q ∈ Qβ(F ) such that p = q ◦ T and

‖q‖Q‖T‖nL∞ � (1 + ε)‖p‖Qβ◦L∞ . We choose R ∈ L(E, L∞(μ)) and S ∈ L(L∞(μ), F ′′) factoring J F ◦ T : E → F ′′ with

‖R‖‖S‖ � (1 + ε)‖T‖L∞ . Also, since Qβ is a maximal polynomial ideal, its canonical extension q : F ′′ → K belongs to

Qβ and satisfies ‖q‖Qβ
= ‖q‖Qβ

[5]. We then have the following commutative diagram:

E
p

T
R

K

L∞(μ)

S

F

q

J F

F ′′

q

Since q ◦ S ∈ Qβ(L∞(μ))
1= Q/β\(L∞(μ)) we have

‖p‖Q/β\ � ‖q ◦ S‖Q/β\‖R‖n = ‖q ◦ S‖Qβ ‖R‖n � ‖q‖Qβ ‖S‖n‖R‖n � (1+ ε)n‖q‖Qβ ‖T‖nL∞
� (1+ ε)n+1‖p‖Qβ◦L∞ .

Thus, Q/β\
1= Qβ ◦ L∞.
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Now we show the second identity. First notice that L1 = Ldual∞ (this follows, for example, from Corollary 3 in [7, 17.8]

and the information on the table in [7, 27.2]). Since L∞ is maximal and accessible [7, Theorem 21.5] and obviously Q/β\
is a Banach ideal of continuous polynomials, we can apply Proposition 3.3 to the equality Q/β ′\

1= Qβ ′ ◦ L∞ to obtain

Q\α/ = Qα ◦ L−1
1 with ‖ ‖Qα◦L−1

1
= ‖ ‖Q\α/

. �
4. Symmetric natural tensor norms of order n

In [15] Grothendieck defined natural 2-fold norms as those that can be obtained from π2 by a finite number of the

following operations: dualization, transposition, and taking right injective, left injective, right projective and left projective

associate. The aim of this section is to define and study natural symmetric tensor norms of arbitrary order, in the spirit of

Grothendieck’s norms.

Definition 4.1. Let β be an s-tensor norm of order n. We say that β is a natural s-tensor norm if β is obtained from πn,s

with a finite number of the operations \ /, / \ and ′ .

For (full) tensor norms of order 2, there are exactly four natural norms that are symmetric [7, Section 27]. It is easy

to show that the same holds for s-tensor norms of order 2 (see the proof of Theorem 4.2). These are π2,s , ε2,s , /π2,s\
and \ε2,s/, with the same dominations as in the full case. It is important to mention that, for n = 2, \εn,s/ and \/πn,s\/
coincide, and so do /πn,s\ and /\εn,s/\. However, for n � 3, we have the following.

Theorem 4.2. For n � 3, there are exactly 6 different natural symmetric s-tensor norms. They can be arranged in the following way:

πn,s

Pn
I

\/πn,s\/
Pn

I ◦ (L1)
−1 ◦ L∞

/πn,s\
P I ◦ (L1)

−1

\εn,s/

Pn
e

/\εn,s/\
Pn
e ◦ (L1)

−1

εn,s

Pn

(8)

where β → γ means that β dominates γ . There are no other dominations than those showed in the scheme. Below each tensor norm

we find its associated maximal polynomial ideal.

We recall that Pn
e stands for the ideal of extendible polynomials (see Section 3). Before we prove the theorem, we need

some previous results and definitions. Let α be a full tensor norm of order n. We will denote by α the full tensor norm of

order n − 1 given by

α

(
z,

n−1⊗
i=1

Ei

)
:= α(z ⊗ 1, E1 ⊗ · · · ⊗ En−1 ⊗ C),

where z ⊗ 1 := ∑m
i=1 x

i
1 ⊗ · · · ⊗ xin ⊗ 1, for z = ∑m

i=1 x
i
1 ⊗ · · · ⊗ xin (this definition can be seen as dual to some ideas on [1]

and [4]).
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Lemma 4.3. For any tensor norm α, we have: (/α\) = /α\ and (\α/) = \α/. Also, if α and γ are full tensor norms and there exists

C > 0 such that α � Cγ , then α � Cγ .

Proof. Let z ∈ ⊗n
i=1 Ei . For the first statement, if Ii : Ei → 	∞(BE ′

i
) are the canonical embeddings, we have

/α\(z, E1 ⊗ · · · ⊗ En−1) = α

(
n⊗

i=1

Ii(z), 	∞(BE ′
1
) ⊗ · · · ⊗ 	∞(BE ′

n−1
)

)

= α

(
n⊗

i=1

Ii(z) ⊗ 1, 	∞(BE ′
1
) ⊗ · · · ⊗ 	∞(BE ′

n−1
) ⊗ C

)
= /α\(z ⊗ 1, E1 ⊗ · · · ⊗ En−1 ⊗ C)

= (/α\)(z, E1 ⊗ · · · ⊗ En−1).

For the second statement, if Q i : 	1(B(Ei)) � Ei are the canonical quotient mappings, we obtain

\α/(z, E1 ⊗ · · · ⊗ En−1) = inf
{t / ⊗n−1

i=1 Pi(t)=z}
α

(
t, 	1(BE1) ⊗ · · · ⊗ 	1(BEn−1

)
)

= inf
{t / ⊗n−1

i=1 Pi(t)=z}
α

(
t ⊗ 1, 	1(BE1) ⊗ · · · ⊗ 	1(BEn ) ⊗ C

)
= inf

{t / (P1⊗···⊗Pn−1⊗idC)(t⊗1)=z⊗1}
α

(
t ⊗ 1, 	1(BE1) ⊗ · · · ⊗ 	1(BEn−1

) ⊗ C
)

= \α/(z ⊗ 1, E1 ⊗ · · · ⊗ En−1 ⊗ C)

= (\α/)(z, E1 ⊗ · · · ⊗ En−1).

The third statement is immediate. �
Floret in [11] showed that for every s-tensor norm β of order n there exists a full tensor norm Φ(β) of order n which

is equivalent to β when restricted on symmetric tensor products (i.e. there is a constant dn depending only on n such that

d−1
n Φ(β)|s � β � dnΦ(β)|s in ⊗n,s E for every Banach space E). As a consequence, a large part of the isomorphic theory

of norms on symmetric tensor products can be deduced from the theory of “full” tensor norms, which is usually easier to

handle and has been more studied.

Lemma 4.4. Let β be an s-tensor norm of order n. Then Φ(/β\) and /Φ(β)\ are equivalent s-tensor norms. Also, Φ(\β/) and \Φ(β)/

are equivalent s-tensor norms.

Proof. For simplicity, we consider the case n = 2, the proof of the general case being completely analogous. The definition

of the injective associate gives

E1 ⊗/Φ(β)\ E2
1

↪→ 	∞(BE ′
1
) ⊗Φ(β) 	∞(BE ′

2
).

Take x1, . . . , xr ∈ E1 and y1, . . . , yr ∈ E2 and let Ii : Ei → 	∞(BE ′
i
) be the canonical embeddings (3). Following the notation

in [11], we have:

/Φ(β)\
(

r∑
j=1

x j ⊗ y j

)
= Φ(β)

(
r∑

j=1

I1(x j) ⊗ I2(y j), 	∞(BE ′
1
) ⊗ 	∞(BE ′

2
)

)

= √
2K2(β)−1β

(
r∑

j=1

(
I1(x j),0

) ∨ (
0, I2(y j)

)
,⊗2,s

{
	∞(BE ′

1
) ⊕2 	∞(BE ′

2
)
})

� √
2K2(β)−1β

(
r∑

j=1

(
I1(x j),0

) ∨ (
0, I2(y j)

)
,⊗2,s

{
	∞(BE ′

1
) ⊕∞ 	∞(BE ′

2
)
})

= √
2K2(β)−1/β\

(
r∑

j=1

(
I1(x j),0

) ∨ (
0, I2(y j)

)
,⊗2,s

{
	∞(BE ′

1
) ⊕∞ 	∞(BE ′

2
)
})

� √
2K2(β)−1/β\

(
r∑

j=1

(
I1(x j),0

) ∨ (
0, I2(y j)

)
,⊗2,s

{
	∞(BE ′

1
) ⊕2 	∞(BE ′

2
)
})
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= √
2K2(β)−1/β\

(
r∑

j=1

(x j,0) ∨ (0, y j),⊗2,s{E1 ⊕2 E2}
)

= Φ(/β\)
(

r∑
j=1

x j ⊗ y j

)
,

where � means that the two expressions are equivalent up to universal constants. The second equivalence follows from the

first one by duality, since by [11, Theorem 2.3(8)] and (4) we have Φ(\β/) = Φ((/β ′\)′) ∼ Φ(/β ′\)′ ∼ /Φ(β ′)\′ = \Φ(β ′)′/ ∼
\Φ(β)/. �

As a consequence of these results we can see that no injective norm β can be equivalent to a projective norm δ.

Indeed, if they were equivalent, we would have \εn,s/ � \β/ � C1δ � C2β � C2/πn,s\. Since Φ respects inequalities [11,

Theorem 2.3(4)], an application of Lemmas 4.4 and 4.3, together with the obvious identities εn+1 = εn , πn+1 = πn would

give \ε2/ ∼ w ′
2 � D/π2\ ∼ w2, a contradiction.

Another consequence is that π2,s , ε2,s , /π2,s\ and \ε2,s/ are the non-equivalent natural s-tensor norms for n = 2. This

follows from the 2-fold result (see [7, Chapter 27]), which states that π2, ε2, /π2\ and \ε2/ are the only natural 2-fold tensor

norms that are symmetric. So Lemma 4.4 and the properties of Φ give our claim, as well as the following dominations:

ε2,s � \ε2,s/ � /π2,s\ � π2,s .

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. To prove that all the possible natural n-fold s-tensor norms (n � 3) are listed in (8), it is enough

to show that /\/πn,s\/\ coincides with /πn,s\. From the inequality \/πn,s\/ � πn,s we readily obtain /\/πn,s\/\ � /πn,s\.
Also, the inequality εn,s � /\εn,s/\ gives \εn,s/ � \/\εn,s/\/ and, by duality, we have /πn,s\ � /\/πn,s\/\.

Now we see that the listed norms are all different. First, /πn,s\ and \/πn,s\/ cannot be equivalent, since the first one

is injective and the second one is projective. Analogously, \εn,s/ is not equivalent to /\εn,s/\. Until now, everything works

just as in the case n = 2. The difference appears when we consider the relationship between \/πn,s\/ and \εn,s/: we will

see in Theorem 4.6 that \/πn,s\/ and \εn,s/ cannot be equivalent on any infinite dimensional Banach space, which is much

more than we need. By duality, conclude that the six listed norms in Theorem 4.2 are different.

It is clear that all the dominations presented in (8) hold, so we must show that /πn,s\ does not dominate \εn,s/ nor

\εn,s/ dominates /πn,s\. Note that the inequality /πn,s\ � C\εn,s/ would imply the equivalence between /πn,s\ and εn,s on

⊗n,s	1, which is impossible (see [3,17,18]). Finally, if /πn,s\ dominates \εn,s/, then we can reason as in the comments after

Lemma 4.4 and conclude that /π2\ dominates \ε2/, which contradicts [7, Chapter 27].

The maximal polynomial ideals associated to the natural norms are easily obtained using Theorem 3.1 and the fact that

Q/β\ and Q\γ / are associated to the norms \β ′/ and /γ ′\ respectively. �
The 2-fold tensor norms π2 and \ε2/ (which is equivalent to w ′

2) share two interesting properties. The first property is

that they dominate their dual tensor norm. Indeed, the inequality π ′
2 = ε2 � π2 is clear, and we see in [7, 27.2] that w2 is

dominated by w ′
2 (or, analogously, /π2\ is dominated by \ε2/). The second property is that both π2 and w ′

2 preserve the

Banach algebra structure [6]. These two properties are enjoyed, of course, by their corresponding 2-fold s-tensor norms (see

the proof of Theorem 4.2 for the first one, and Section 5 for the second one). As we have already seen, the n-dimensional

analogue of the s-tensor norm \ε2,s/ splits into two non-equivalent ones when passing from tensor products of order 2 to

tensor products of order n � 3. Namely, \εn,s/ and \/πn,s\/. It is remarkable that the two mentioned properties are enjoyed

only by \/πn,s\/ and not by \εn,s/, as seen in Theorems 4.2 and 5.3.

Theorem 4.6 below shows that there is no infinite dimensional Banach space E such that \εn,s/ and \/πn,s\/ are equiv-

alent in ⊗n,s E for n � 3. This means that the splitting of \εn,s/ when passing from n = 2 to n � 3 is rather drastic. To prove

the theorem we need the following proposition.

Proposition 4.5. Let Q be a polynomial ideal and β its associated tensor norm. If β is injective then Q is accessible.

Proof. Let q be a finite type polynomial on E and choose (x′
j)
r
j=1 in E ′ such that q = ∑r

j=1(x
′
j)
n . We set L = ⋂r

j=1 Ker(x
′
j),

which is a finite codimensional subspace of E . For each j = 1, . . . , r, let x′
j ∈ (E/L)′ be defined by x′

j(x) := x′
j(x) (where x

denotes the class of x in E/L). If Q L
E : E → E/L is the quotient map and p is the polynomial on E/L given by p = ∑r

j=1(x
′
j)
n ,

we have q = p ◦ Q E
L . Also, since β is injective we have the isometry

⊗n,s
(
Q E

L

)′ : ⊗n,s
β (E/L)′ 1

↪→ ⊗n,s
β E ′.

This altogether gives
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‖p‖Q = β

(
r∑

j=1

⊗nx′
j,⊗n,s(E/L)′

)
= β

(
⊗n,s

(
Q E

L

)′
(

r∑
j=1

⊗nx′
j

)
,⊗n,s E ′

)
= β

(
r∑

j=1

⊗nx′
j,⊗n,s E ′

)
= ‖q‖Q,

which shows the accessibility of Q. �
Theorem 4.6. For n � 3, \εn,s/ and \/πn,s\/ are equivalent in ⊗n,s E if and only if E is finite dimensional. The same happens if /πn,s\
and /\εn,s/\ are equivalent on E.

Proof. We will first prove that if E is infinite dimensional, then /πn,s\ and /\εn,s/\ are not equivalent in ⊗n,s E . Suppose

they are. Then, we have

Pn
e (E) = (⊗n,s

/πn,s\E
)′ = (⊗n,s

/\εn,s/\E
)′ = Q/\εn,s/\(E).

By the open mapping theorem, there must be a constant M > 0 such that ‖p‖Q/\εn,s/\(E) � M‖p‖Pn
e (E), for every extendible

polynomial p on E . If F is a subspace of E , any extendible polynomial on F extends to an extendible polynomial on E

with the same extendible norm. Therefore, for every subspace F of E and every extendible polynomial q on F , we have

‖q‖Q/\εn,s/\(F ) � M‖q‖Pn
e (F ) .

Since E is an infinite dimensional space, by Dvoretzky’s theorem it contains (	k2)k uniformly. Then there exists a constant

C > 0 such that for every k and every polynomial q on 	k2, we have

‖q‖Q/\εn,s/\(	k2)
� C‖q‖Pn

e (	k2)
.

Since the ideal of extendible polynomials is maximal (it is dual to an s-tensor norms), we deduce that

Pn
e (	2) ⊂ Q/\εn,s/\(	2). (9)

Let us show that this is not true. Since /\εn,s/\ is injective and we have an inclusion 	2 ↪→ L1[0,1], each p ∈ Q/\εn,s/\(	2)
can be extended to a /\εn,s/\-continuous polynomial p̃ on L1[0,1]. Now, εn,s coincides with \εn,s/ on L1[0,1], which is

in turn dominated by /\εn,s/\. Therefore, the polynomial p̃ is actually εn,s-continuous or, in other words, integral. Since p̃

extends p, the latter polynomial must also be integral, and we have shown that Q/\εn,s/\(	2) is contained in Pn
I (	2). But it

is shown in [3,17,18] that there are always extendible non-integral polynomials on any infinite dimensional Banach space,

so (9) cannot hold. This contradiction shows that /πn,s\ and /\εn,s/\ cannot be equivalent on E .

Now we will show that \εn,s/ and \/πn,s\/ are not equivalent in ⊗n,s E , for any infinite dimensional Banach space E .

Suppose they are. By duality, we have Q\εn,s/ = Q\/πn,s\/ with equivalent norms. Proposition 4.5 ensures that the polynomial

ideals Q\εn,s/ , Q\/πn,s\/ are both accessible, since they are associated to the injective norms /πn,s\ and /\εn,s/\ respectively.

Thus, by [10, Proposition 3.6] we have:

⊗̃n,s
/πn,s\E

′ 1
↪→ Q\εn,s/(E) and ⊗̃n,s

/\εn,s/\E
′ 1
↪→ Q\/πn,s\/(E).

But this implies that /πn,s\ and /\εn,s/\ are equivalent in ⊗n,s E ′ , which is impossible by the already proved first statement

of the theorem. �
5. s-Tensor norms preserving the Banach algebra structure

Carne in [6] described the natural 2-fold tensor norms that preserve the Banach algebra structure. In this section we will

show that πn,s and \/πn,s\/ are the only natural s-tensor norms that preserve the algebra structure.

For a given Banach algebra A we will denote m(A) : A ⊗π2
A → A the map induced by the multiplication A × A → A.

The following theorem is a symmetric version of Carne [6, Theorem 1]. Its proof is obtained by adapting the one in [6] for

the symmetric setting.

Theorem 5.1. For an s-tensor norm β of order n the following conditions are equivalent.

(1) If A is Banach algebra, the n-fold symmetric tensor product ⊗̃n,s
β A is a Banach algebra with the natural algebra structure.

(2) For all Banach spaces E and F there is a natural continuous linear map

f : (⊗n,s
β E

) ⊗π2

(⊗n,s
β F

) → (⊗n,s
β (E ⊗π2

F )
)

with

f
((⊗nx

) ⊗ (⊗n y
)) = ⊗n(x⊗ y).
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(3) For all Banach spaces E and F there is a natural continuous map

g : (⊗n,s
β ′ (E ⊗ε2 F )

) → (⊗n,s
β ′ E

) ⊗ε2

(⊗n,s
β ′ F

)
given by

g
(⊗n(x⊗ y)

) = (⊗nx
) ⊗ (⊗n y

)
.

(4) For all Banach spaces E and F there is a natural continuous map

h : ⊗n,s
β ′ L(E, F ) → L(⊗n,s

β E,⊗n,s
β ′ F

)
,

with

h
(⊗nT

)(⊗nx
) = ⊗n(T x).

If one, hence all, of the above holds, then there are constants c1, c2, c3, c4 so that

(1) ‖m(⊗̃n,s
β A)‖ � c1‖m(A)‖n,

(2) ‖ f ‖ � c2 for all E and F ,

(3) ‖g‖ � c3 for all E and F ,

(4) ‖h‖ � c4 for all E and F ,

and the least values of these four agree.

If the s-tensor norm β preserves the Banach algebra structure, then we will call the common least value of the constants

in the theorem, the Banach algebra constant of β .

An important comment is in order: if we take E = F and T = idE in (4), then we obtain ‖h(⊗n,sidE )‖ � c4. But it is plain

that h(⊗nidE ) is just id⊗n,s E . Therefore, we have∥∥id⊗n,s E : ⊗n,s
β E → ⊗n,s

β ′ E
∥∥ � c4,

which means that β ′ � c4β . So we can state the following remark.

Remark 5.2. If β is an s-tensor norm which preserves the Banach algebra structure, then there is a constant k such that

β ′ � kβ .

The following theorem is the main result of this section. The proof that πs preserves the Banach algebra structure is

similar to the one for π2 in [6], and we include it for completeness.

Theorem 5.3. The only natural s-tensor norms of order n which preserve the Banach algebra structure are: πn,s and \/πn,s\/. Fur-
thermore, the Banach algebra constants of both norms are exactly one.

Proof. It follows from Theorem 4.2 and the previous remark that πn,s and \/πn,s\/ are the only candidates among natural

s-tensor norms to preserve the Banach algebra structure.

First we prove that πs preserves the Banach algebra structure. By Theorem 5.1, it is enough to show, for any pair of

Banach spaces E and F , that the mapping

f : (⊗n,s
πn,s

E
) ⊗π2

(⊗n,s
πn,s

F
) → (⊗n,s

πn,s
(E ⊗π2

F )
)
,

defined by

f
((⊗nx

) ⊗ (⊗n y
)) = ⊗n(x⊗ y),

has norm less than or equal to one. Fix ε > 0. Given w ∈ (⊗n,s E) ⊗ (⊗n,s F ), we can write it as

w =
r∑

i=1

ui ⊗ vi,

with

r∑
i=1

πn,s(ui)πn,s(vi) � π2(w)(1 + ε)1/3.
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Also, for each i = 1, . . . , r we write ui and vi as

ui =
J (i)∑
j=1

⊗nxij ∈ ⊗n,s E, vi =
K (i)∑
k=1

⊗n yik ∈ ⊗n,s F ,

with

J (i)∑
j=1

∥∥xij∥∥n � πn,s(ui)(1 + ε)1/3,

K (i)∑
k=1

∥∥yik∥∥n � πn,s(vi)(1 + ε)1/3.

We have

f (w) =
r∑

i=1

∑
1� j� J (i)
1�k�K (i)

⊗n
(
xij ⊗ yik

)
,

and then

πn,s

(
f (w)

)
�

r∑
i=1

∑
1� j� J (i)
1�k�K (i)

π2

(
xij ⊗ yik

)n =
r∑

i=1

∑
1� j� J (i)
1�k�K (i)

∥∥xij∥∥n∥∥yik∥∥n =
r∑

i=1

( ∑
j� J (i)

∥∥xij∥∥n
)( ∑

k�K (i)

∥∥yik∥∥n
)

=
r∑

i=1

πn,s(ui)(1 + ε)1/3πn,s(vi)(1 + ε)1/3 = (1 + ε)2/3
r∑

i=1

π2(ui)π2(vi) � (1+ ε)π(w).

From this we conclude that ‖ f ‖ � 1.

To prove that \/πn,s\/ preserves the Banach algebra structure we need two technical lemmas.

Lemma 5.4. Let Y and Z be Banach spaces. The operator

φ : ⊗n,s
/πn,s\L(

	1(BY ), Z
) → L(⊗n,s

/πn,s\	1(BY ),⊗n,s
/πn,s\Z

)
,

given by

φ
(⊗nT

)(⊗nu
) = ⊗nT u,

has norm less than or equal to one.

Proof. The mapping

L(
	1(BY ), 	∞(B Z ′)

) → L(⊗n,s
/πn,s\	1(BY ),⊗n,s

/πn,s\ Z
)

T �→ ⊗nT

is an n-homogeneous polynomial, which has norm one by the metric mapping property of the norm /πn,s\. As a con-

sequence, its linearization is a norm one operator from ⊗n,s
/πn,s\L(	1(BY ), 	∞(B Z ′ )) to L(⊗n,s

/πn,s\	1(BY ),⊗n,s
/πn,s\ Z). Since

L(	1(BY ), 	∞(B Z ′ )) is an L∞ space we have

⊗n,s
/πn,s\L(

	1(BY ), 	∞(B Z ′)
) 1= ⊗n,s

πn,s
L(

	1(BY ), 	∞(B Z ′)
)
.

This shows that the canonical mapping

⊗n,s
/πn,s\L(

	1(BY ), 	∞(B Z ′)
) → L(⊗n,s

/πn,s\	1(BY ),⊗n,s
/πn,s\	∞(B Z ′)

)
has norm one.

On the other hand, the following diagram commutes

⊗n,s
/πn,s\L(	1(BY ), 	∞(B Z ′)) L(⊗n,s

/πn,s\	1(BY ),⊗n,s
/πn,s\	∞(B Z ′))

⊗n,s
/πn,s\L(	1(BY ), Z)

φ L(⊗n,s
/πn,s\	1(BY ),⊗n,s

/πn,s\ Z)
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Here the vertical arrows are the natural inclusion, which are actually isometries since the norm /πn,s\ is injective. The

horizontal arrow above is the canonical mapping whose norm was shown to be one. Therefore, the norm of φ must be less

than or equal to one. �
Before we state our next lemma, we observe that linear operators from X1 to L(X2, X3) identify (isometrically) with

bilinear operators from X1 × X2 to X3 and, consequently, with linear operators from X1 ⊗π X2 to X3. The isometry is given

by

L(
X1, L(X2, X3)

) → L(X1 ⊗π X2, X3)

T �→ BT , (10)

where BT (x1 ⊗ x2) = T (x1)(x2).

Lemma 5.5. Let E and F be Banach spaces. The operator

ρ : (⊗n,s
/πn,s\	1(BE)

) ⊗π2

(⊗n,s
/πn,s\	1(BF )

) → ⊗n,s
/πn,s\

(
	1(BE) ⊗π2

	1(BF )
)
,

given by

ρ
((⊗nu

) ⊗ (⊗nv
)) = ⊗n(u ⊗ v),

has norm less than or equal to one.

Proof. If we take Y = F and Z = 	1(BE ) ⊗π2
	1(BF ) in Lemma 5.4, we see that the operator

φ : ⊗n,s
/πn,s\L(

	1(BF ), 	1(BE) ⊗π2
	1(BF )

) → L(⊗n,s
/πn,s\	1(BE),⊗n,s

/πn,s\
(
	1(BE) ⊗π2

	1(BF )
))

has norm at most 1. Also the application J : 	1(BE ) → L(	1(BF ), 	1(BE ) ⊗π2
	1(BF )) defined by J z(w) = z ⊗ w has norm

one. Therefore, the norm of the map ψ := φ ◦ ⊗n,s J between the corresponding /πn,s\-tensor products is at most one.

Now, with the identification given in (10), the operator ρ is precisely Bψ , and since (10), we conclude that ρ has norm

at most one. �
Now we are ready to prove that \/πn,s\/ preserves the Banach algebra structure with Banach algebra constant equal to

one. Again by Theorem 5.1, it is enough to show that, for Banach spaces E and F , the map

f : (⊗n,s
\/πn,s\/E

) ⊗π2

(⊗n,s
\/πn,s\/F

) → ⊗n,s
\/πn,s\/(E ⊗π2

F ),

defined by

f
((⊗nx

) ⊗ (⊗n y
)) = ⊗n(x⊗ y),

has norm at most one. The following diagram, where the vertical arrows are the canonical quotient maps, commutes:

(⊗n,s
/πn,s\	1(BE)) ⊗π2

(⊗n,s
/πn,s\	1(BF ))

ρ
(⊗n,s

/πn,s\(	1(BE) ⊗π2
	1(BF )))

(⊗n,s
\/πn,s\/E) ⊗π2

(⊗n,s
\/πn,s\/F )

f
(⊗n,s

\/πn,s\/(E ⊗π2
F ))

By the previous lemma, ρ has norm less than or equal to one, and so is the norm of f , since the other mappings are

quotients. �
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