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Abstract. We introduce the class of operator p-compact mappings and completely right p-nuclear

operators, which are natural extensions to the operator space framework of their corresponding

Banach operator ideals. We relate these two classes, define natural operator space structures and

study several properties of these ideals. We show that the class of operator ∞-compact mappings

in fact coincides with a notion already introduced by Webster in the nineties (in a very different

language). This allows us to provide an operator space structure to Webster’s class.

Introduction

Alexander Grothendieck, one of the most influential mathematicians of the 20th century, took his

first steps in research in the area of functional analysis. In his early work, he developed a systematic

theory of tensor products and norms [26], where he set the basis of what was later known as local

theory — that is, the study of Banach spaces in terms of their finite-dimensional subspaces — and

exhibited the importance of the use of tensor products in the theory of Banach (and locally convex)

spaces. Grothendieck’s approach, although at first it received little notice given its complexity and

the language in which it was written, was rediscovered at the end of the sixties by Lindenstrauss and

Pe lczyński [35] and inspired huge developments in Banach space theory. In particular, it inspired

the creation of a whole new theory: the study of operator ideals (systematized by Pietsch and the

German school [40, 41]). In order to develop the metric theory of tensor products, Grothendieck

gave a characterization of compactness in Banach spaces of independent interest [25, Chap. I, p.

112]: relatively compact sets are precisely those that lie within the absolutely convex hull of a null

sequence. That is, a set K in a Banach space X is relatively compact if and only if there is a

sequence (xn)n∈N in X such that

(1) K ⊆

{ ∞∑
n=1

αnxn :
∞∑
n=1

|αn| ≤ 1

}
and lim

n→∞
‖xn‖ = 0.

Inspired by Grothendieck’s result, Sinha and Karn [49] introduced the notion of relatively p-

compact sets. This definition describes relatively p-compact sets as those which are determined in

a way similar to (1), but by p-summable sequences instead of null ones. That is, if 1 ≤ p <∞ and
1
p + 1

p′ = 1, a subset K ⊂ X is called relatively p-compact if there exists a sequence (xn)n in X such
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that

(2) K ⊆

{ ∞∑
n=1

αnxn :

∞∑
n=1

|αn|p
′ ≤ 1

}
and

∞∑
n=1

‖xn‖p <∞.

Of course, in the limiting case p = 1 we replace the definition above by K ⊆ {
∑∞

n=1 αnxn : |αn| ≤ 1}
and

∑∞
n=1 ‖xn‖ < ∞. Thus, classical compact sets can then be seen as “∞-compact”. Moreover,

the following monotonicity relation holds: if 1 ≤ q ≤ p ≤ ∞, any relatively q-compact set is in fact

relatively p-compact. Therefore, p-compactness reveals “finer and subtle” structures on compact

sets.

Having this definition at hand, it is natural to think about extending the notion of compactness

to linear mappings. By simple analogy, p-compact mappings arise as those which map the unit

ball into a relatively p-compact set. This definition, which comes from Sinha and Karn’s original

paper [49], turns out to yield a normed operator ideal, denoted by Kp (see the precise definition

in Section 3). In recent years there has been great interest in this class — and in some notions

that naturally relate to it — from a variety of perspectives including: the theory of operator ideals

[50, 16, 15, 1, 43, 51, 21], the theory of tensor norms [24], the interplay with various approximation

properties [14, 12, 32, 33, 31, 34, 39, 38], structural properties of sets and sequences [44, 2, 30, 23],

infinite dimensional complex analysis [4, 5, 6, 36, 3].

The main goal of the present paper is to initiate the study of a noncommutative version of p-

compact mappings, specifically in the context of operator spaces. Recall that an operator space is

a Banach space X with an extra “matricial norm structure”: in addition to the norm on X, we

have norms on all the spaces Mn(X) of n×n matrices with entries from X (and these norms must

satisfy certain consistency requirements). The morphisms are no longer just bounded maps, but

the completely bounded ones: they are required to be uniformly bounded on all the matricial levels.

Operator spaces are thus a quantized or noncommutative version of Banach spaces, giving rise to

a theory that not only is mathematically attractive but it is also naturally well-positioned to have

applications to quantum physics. The systematic study of operator spaces started with Ruan’s

thesis, and was developed mainly by Effros and Ruan, Blecher and Paulsen, Pisier and Junge (see

the monographs [28, 45, 8, 20, 46] and the references therein).

Due to their very definition, it is natural to investigate to what extent the classical theory of

Banach spaces can be translated to the noncommutative context of operator spaces. Though some

properties do carry over, many do not and these differences are one of the reasons making the new

theory so interesting. In particular, both ideals of operators and tensor norms have inspired im-

portant developments in the operator space setting. Noncommutative versions of nuclear, integral,

summing, and other ideals of operators have played significant roles in, e.g., [20, 45, 27, 19, 29],

whereas in addition to the usefulness of various specific tensor norms for operator spaces (most

notably the Haagerup one), Blecher and Paulsen [9] have showed that the elementary theory of

tensor norms of Banach spaces carries over to operator spaces, initiating a “tensor norm program”

for operator spaces further developed in [7]. However, the abstract tool of associating ideals of

operators and tensor norms in the sense of [13, Chap. 17] does not appear to have been developed

yet. In the present paper we take some small steps in this direction, which we need throughout our
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definition and study of the new class of operator p-compact mappings (which we denote by Kop). A

much more thorough study of the relationships between tensor norms and ideals of mappings in

the operator space category will appear in [11].

One way to define this class is to rely on certain factorizations that characterize p-compact

mappings via right p-nuclear maps. To this end, we study and define the ideal of completely right

p-nuclear mappings, N p
o (which are, in some way, a transposed version of the class given in [27,

Definition 3.1.3.1.] called p-nuclear operators). In particular, Kop is the surjective hull of N p
o , as

shown by Delgado, Piñeiro and Serrano [16, Prop. 3.11] and by Pietsch [43, Thm. 1] in the Banach

space context. This relation among these two classes enables us to give an appropriate operator

space structure to Kop.
At the end of the nineties, Webster (a student of Effros) proposed in his doctoral thesis [52]

several ways to extend the notion of compactness to the operator space framework (see also [53]).

One of these notions, which he called operator compactness, is in effect a noncommutative version

of Grothendieck’s characterization (being in the absolute convex hull of a null sequence as in

Equation (1)). This also gave raise to the notion of operator compact mappings. Therefore, another

path to translate the concept of p-compactness to the category of operator spaces is based on

Webster’s ideas. We show that these two possible ways to define p-compactness in the operator

space setting (the one which involves the factorization through completely right p-nuclear mappings

and the one based on Webster’s work) in fact coincide. This allows us to endow Webster’s class (of

operator compact mappings) with an operator space structure.

The article is organized as follows. In Section 1 we present the notation and some basic concepts

in the theory of operator spaces. In Section 2 we introduce the notion of completely right p-nuclear

mappings, first in tensor terms and then proving a characterization in terms of factorizations. It

should be mentioned that for p = 1, this concept coincides with the completely nuclear mappings

already studied in [20, Section 12.2]. In Section 3 we introduce a notion of operator p-compact

mappings based on factorization schemes, and give an operator space structure to this class by

relating it to the aforementioned right p-nuclear mappings. Additionally, we characterize operator

p-compact mappings in terms of a noncommutative notion of p-compact sets. We end the article

with some open questions.

1. Preliminaries

Our Banach space notation is quite standard, and follows closely that of [13, 48]. The injective

tensor product of Banach spaces will be denoted by ⊗ε. For a Banach space X and 1 ≤ p < ∞,

we denote by `p(X) and `wp (X) the spaces of p-summable and weakly p-summable sequences in X,

respectively, with their usual norms

‖(xn)‖`p(X) =

( ∞∑
n=1

‖xn‖p
)1/p

, ‖(xn)‖`wp (X) = sup
‖x′‖≤1

( ∞∑
n=1

∣∣x′(xn)
∣∣p)1/p

where x′ is taken in X′, the dual of X. The obvious modifications are adapted to the case p =∞.

The unit ball of X is denoted by BX.
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We only assume familiarity with the basic theory of operator spaces; the books [46] and [20] are

excellent references. Our notation follows closely that from [45, 46], with one main exception: we

denote the dual of a space E by E′.

Throughout the article E and F will be operator spaces. For each n, Mn(E) will denote the space

of n × n matrices of elements of E. We will just write Mn when E is the scalar field. The spaces

Mn×m(E) and Mn×m are defined analogously. For a linear mapping T : E → F , we will denote its

n-amplification by Tn : Mn(E)→Mn(F ). The space of completely bounded linear mappings from

E into F will be noted by CB(E,F ). The corresponding bilinear notion is the following: a bilinear

map T : E1 ×E2 → F is jointly completely bounded if there exists a constant C ≥ 0 such that for

any matrices (xi,j)
n
i,j=1 ∈Mn(E1) and (yk,`)

m
k,`=1 ∈Mm(E2) we have

∥∥(T (xi,j , yk,`))
∥∥
Mnm(F )

≤
∥∥(xi,j)

n
i,j=1

∥∥
Mn(E1)

∥∥(yk,`)
m
k,`=1

∥∥
Mm(E2)

.

The least such C is denoted ‖T‖jcb. As in [20, Sec. 10.1] we will denote by M∞(E) the space

of all infinite matrices (xi,j) with coefficients in E such that the truncated matrices are uniformly

bounded, i.e., supn∈N ‖(xi,j)ni,j=1‖Mn(E) < ∞. This supremum corresponds to the norm of the

element (xi,j) in M∞(E). The space M∞ of bounded scalar infinite matrices is naturally identified

with B(`2).

Our notation for the minimal and the projective operator space tensor products will be, respec-

tively, ⊗min and ⊗proj. By an operator space cross norm α we mean an assignment of an operator

space E ⊗α F to each pair (E,F ) of operator spaces, in such a way that E ⊗α F is the algebraic

tensor product E ⊗ F together with a matricial norm structure on E ⊗ F that we write as αn or

‖·‖αn , and such that αnm(x ⊗ y) = ‖x‖Mn(E) · ‖y‖Mm(F ) for every x ∈ Mn(E), y ∈ Mm(F ). This

implies that the identity map E ⊗proj F → E ⊗α F is completely contractive [9, Thm. 5.5]. If in

addition the identity map E ⊗α F → E ⊗min F is also completely contractive, we say that α is

an operator space tensor norm. Moreover, an operator space tensor norm α is called uniform if

additionally for any operator spaces E1, E2, F1, F2, the map

⊗α : CB(E1, E2) × CB(F1, F2) → CB(E1 ⊗α E2, F1 ⊗α F2) given by (S, T ) 7→ S ⊗α T is jointly

completely contractive.

If α is an operator space tensor norm, the completion of the tensor product E⊗αF will be denoted

by E⊗̂αF . A degree of caution is required when consulting different works dealing with operator

space tensor products, since the term “tensor norm” is not always taken to have the exact same

meaning. We point out that our definitions are slightly different than those of [9, 20, 18], though

not in any significant way. An operator space tensor norm α is said to be finitely generated if for any

operator spaces E and F and u ∈Mn(E⊗F ), αn(u;E,F ) = inf {αn(u;E0, F0) : u ∈Mn(E0 ⊗ F0)},
where the infimum is taken over finite-dimensional subspaces E0 ⊂ E and F0 ⊂ F . For operator

space tensor norms α and β and a constant c, we write “α ≤ cβ on E ⊗ F” to indicate that the

identity map E ⊗β F → E ⊗α F has cb-norm at most c. If no reference to spaces is made, we

mean that the inequality holds for any pair of operator spaces. A linear map Q : E → F between

operator spaces is called a complete 1-quotient if it is onto and the associated map from E/ker (Q)

to F is a completely isometric isomorphism. These maps are called complete metric surjections in



OPERATOR p-COMPACT MAPPINGS 5

[46, Sec. 2.4], where it is proved that a linear map u : E → F is a complete 1-quotient if and only

if its adjoint u′ : F ′ → E′ is a completely isometric embedding.

For an operator space E and 1 ≤ p ≤ ∞, let us define the spaces Sp and Sp[E] following [45].

For 1 ≤ p < ∞, Sp denotes the space of Schatten p-class operators on `2. In the case p = ∞, we

denote by S∞ the space of all compact operators on `2. We endow S∞ with the operator space

structure inherited from B(`2), and S1 with the one induced by the duality S′1 = B(`2); this then

determines an operator space structure on Sp for each 1 < p <∞ via complex interpolation. More

generally, we define S∞[E] as the minimal operator space tensor product of S∞ and E, and S1[E]

as the operator space projective tensor product of S1 and E. In the case 1 < p < ∞, Sp[E] is

defined via complex interpolation between S∞[E] and S1[E]. For 1 < p ≤ ∞, the dual of Sp[E] can

be canonically identified with Sp′ [E
′], where p′ satisfies 1/p+ 1/p′ = 1.

Recall that, given Banach spaces X and Y and 1 ≤ p ≤ ∞, the p-right Chevet-Saphar tensor

norm ([48, Chapter 6], [13, Chapter 12]) dp of a tensor u ∈ X⊗Y is defined by

(3) dp(u) = inf

‖(xj)‖`p′⊗εX‖(yj)‖`p(Y ) : u =
∑
j

xj ⊗ yj

 ,

where the infimum runs over all the possible ways in which the tensor u can be written as a finite

sum as above.

Moving to the operator space realm, for 1 ≤ p ≤ ∞, in [10] the p-right Chevet-Saphar operator

space tensor norm dop is defined in the following way: given operator spaces E and F , for u ∈ E⊗F ,

(4) dop(u) = inf

‖(xi,j)‖Sp′⊗minE ‖(yi,j)‖Sp[F ] : u =
∑
i,j

xi,j ⊗ yi,j

 ,

where the infimum runs over all the possible ways in which the tensor u can be written as a finite

sum as above.

The operator space structure of the tensor E⊗̂dopF is given by the following 1-quotient (see [10,

Section 3])

Qp : (Sp′⊗̂minE)⊗̂projSp[F ]→ E⊗̂dopF,

where ⊗̂ means the completion of the corresponding tensor product.

An operator space E is called projective if, for any ε > 0, any completely bounded map T : E →
F/S into a quotient space (here F is any operator space and S ⊂ F any closed space) admits a

lifting T̃ : E → F with ‖T̃‖cb ≤ (1 + ε)‖T‖cb.

Following [20, Sec. 12.2], a mapping ideal (A,A) is an assignment, for each pair of operator

spaces E,F , of a linear space A(E,F ) ⊆ CB(E,F ) together with an operator space matrix norm

A on A(E,F ) such that

(i) The identity map A(E,F )→ CB(E,F ) is a complete contraction.

(ii) The ideal property: whenever T ∈ Mn(A(E,F )), r ∈ CB(E0, E) and s ∈ CB(F, F0), it

follows that An(sn ◦ T ◦ r) ≤ ‖s‖cb An(T ) ‖r‖cb .

Finally, a remark about our use of the word operator. In the Banach space literature it is usual

to speak of p-compact operators rather than p-compact mappings, and similarly for other various
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classes of bounded linear transformations between normed spaces. In order to avoid confusions,

throughout this paper we reserve the word operator for notions that are noncommutative in nature

(as in operator space), and use the word mapping to refer to bounded linear transformations.

2. Completely right p-nuclear mappings

In this section we introduce the notion of completely right p-nuclear mappings, inspired by the

definitions in the Banach space setting. For p = 1, this concept coincides with the completely

nuclear mappings studied in [20, Section 12.2]. Recall that in the Banach space setting a linear

mapping T : X→ Y is right p-nuclear ([47],[48, Section 6.2]) if T can be written as

T =

∞∑
n=1

x′n⊗yn,

where (x′n) ∈ `wp′(X
′), (yn) ∈ `p(Y). Moreover, the right p-nuclear norm of T is defined as

νp(T ) := inf{‖(xn)‖`w
p′ (X

′) · ‖(yn)‖`p(Y)},

where the infimum is taken all over possible representations of T as above. The class of all right

p-nuclear mappings is denoted by N p. This definition is known to be equivalent to having a

factorization

(5) X
T //

U
��

Y

`p′
Dλ

// `1,

V

OO

where U and V are bounded mappings, λ ∈ `p, and Dλ stands for the diagonal multiplication

mapping (xn) 7→ (λnxn). Moreover, νp(T ) = inf{‖U‖‖Dλ‖‖V ‖} where the infimum runs over

all factorizations as above. It is well-known that right p-nuclear mappings between the Banach

spaces X and Y are exactly those mappings which are in the range of the canonical inclusion

X′⊗̂dpY → X′⊗̂εY, and the right p-nuclear norm coincides with the quotient norm inherited from

this inclusion (see also the analogous results given in [13, 22.3], [48, Section 6.2] and [17, Proposition

5.23]).

Motivated by this, we introduce a corresponding notion in the category of operator spaces.

Definition 2.1. Let 1 ≤ p ≤ ∞. We say that a linear mapping T : E → F between operator spaces

E and F is completely right p-nuclear if it corresponds to an element in the range of the canonical

inclusion

Jp : E′⊗̂dopF → E′⊗̂minF.

We denote the space of all such mappings by N p
o (E,F ), and we endow it with the quotient structure

(E′⊗̂dopF )/ker Jp. In particular, its norm – that we denote by νpo – is the quotient norm.

For future reference, it is important to remark that since the operator space structure on E′⊗̂dopF
is itself coming from a quotient, the above definition is equivalent to being in the range of

Jp ◦Qp : (Sp′⊗̂minE
′)⊗̂projSp[F ]→ E′⊗̂minF,
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and this still induces the same quotient structure.

Let us start by proving that N p
o is a mapping ideal. We observe, also, that each space N p

o (E,F )

is complete.

Proposition 2.2. N p
o is a mapping ideal, for 1 ≤ p ≤ ∞.

Proof. Given T ∈ Mn(N p
o (E;F )), the definition of right p-nuclearity yields ‖T‖Mn(CB(E;F )) ≤

‖T‖Mn(N po (E;F )). Also for S ∈ CB(E0, E) and R ∈ CB(F, F0) we have RnTS ∈ Mn (N p
o (E0, F0))

and

‖RnTS‖Mn(N po (E0,F0)) ≤ ‖R‖cb ‖T‖Mn(N po (E;F )) ‖S‖cb .

Indeed, by definition there exists t ∈ Mn(E′⊗̂dopF ) such that (Jp)n(t) = T . Since dop is a uniform

operator space tensor norm,

dop
(
(S′ ⊗R)n(t)

)
≤
∥∥S′∥∥

cb
dop(t) ‖R‖cb = ‖S‖cb d

o
p(t) ‖R‖cb .

Note that (Jp)n
(
(S′ ⊗R)n(t)

)
= RnTS, so RnTS ∈Mn(N p

o (E0, F0)) and

‖RnTS‖Mn(N po (E0,F0)) ≤ ‖S‖cb d
o
p(t) ‖R‖cb .

Taking the infimum over all t we get the desired conclusion. �

The following result shows that the formula given in Equation (4) can be extended for tensors

that lie in the completion E⊗̂dopF .

Theorem 2.3. Let 1 ≤ p ≤ ∞, let E and F be operator spaces, and u ∈ E⊗̂dopF . Then

‖u‖dop = inf
{
‖(xij)‖Sp′ ⊗̂minE

‖(yij)‖Sp[F ] : u =
∑
i,j

xij ⊗ yij
}
.

Proof. Let u ∈ E⊗̂dopF . It is clear that ‖u‖dop ≤ ‖(xij)‖Sp′ ⊗̂minE
‖(yij)‖Sp[F ], for any representation

of u =
∑

i,j xij ⊗ yij = Qp ((xij)⊗ (yij)), since Qp is a 1-quotient mapping.

Also, for every η > 0 there is a sequence (um) ∈ E ⊗ F such that u =
∑

m um ∈ E⊗̂dopF with

dop(u1) < dop(u) + η and dop(um) ≤ η2

4m for every m ≥ 2. Now, we can write u1 :=
∑k1

i,j=1 xi,j ⊗ yi,j
where

∥∥∥(xij)
k1
i,j=1

∥∥∥
S
k1
p′ ⊗minE

≤ dop(u)+η and
∥∥∥(yij)

k1
i,j=1

∥∥∥
Sp[F ]

≤ 1. Also, for m ≥ 2, we may represent

um :=
∑km

i,j=km−1+1 xi,j⊗yi,j with
∥∥∥(xij)

k2
i,j=km−1+1

∥∥∥
S
k2
p′ ⊗minE

≤ η
2m and

∥∥∥(yij)
k2
i,j=km−1+1

∥∥∥
Sp[F ]

≤ η
2m .

By the triangle inequality we derive ‖(yij)‖Sp[F ] ≤ 1 + η
∑∞

m=2 2−m and also ‖(xij)‖Sp′ ⊗̂minE
≤

dop(u) + η + η
∑∞

m=2 2−m, which concludes the proof. �

We now introduce a non-commutative version of the sequence space `wp (E), namely

Swp [E] := {x ∈M∞(E) : sup
N
‖(xij)Ni,j=1‖SNp ⊗̂minE

<∞}.

It can be easily seen that this is an operator space endowed with the matricial norm structure

given by

‖
(
xk,lij )i,j

)n
k,l=1
‖Mn(Swp [E]) := sup

N
‖
(
(xk,lij )Ni,j=1

)n
k,l=1
‖Mn(SNp ⊗̂minE).
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Recall that `wp (E) can be identified with the space of bounded linear mappings from `p′ to E [13,

Prop. 8.2.(1)]. The following is the analogous statement for Swp [E].

Lemma 2.4. For 1 ≤ p ≤ ∞, we have the following completely isometric identification

Swp [E] = CB(Sp′ , E).

Proof. Let us see first that the spaces Swp [E] and CB(Sp′ , E) are isometrically isomorphic. For each

N ∈ N, we denote ρN : M∞(E) → MN (E) the N -truncation given by ρN ((xij)ij) = (xi,j)
N
i,j=1.

Each X ∈ Swp [E] satisfies that

‖X‖Swp [E] = sup
N
‖ρN (X)‖SNp ⊗̂minE

= sup
N
‖ρN (X)‖CB(SN

p′ ,E)

since the spaces SNp ⊗̂minE and CB(SNp′ , E) are isometric. Thus, the mapping TX :
⋃∞
N=1 S

N
p′ → E

is well defined (given A ∈ SNp′ for some N ∈ N, TX(A) := ρN (X)(A)) and uniquely extends to

Sp′ by density. The same holds with the n-amplification (TX)n : Mn(
⋃∞
N=1 S

N
p′ )→ Mn(E) (whose

norm is obviously bounded by ‖X‖Swp [E]), and extends to Mn(Sp′). Hence, TX ∈ CB(Sp′ , E) with

‖TX‖CB(Sp′ ,E) ≤ ‖X‖Swp [E].

Conversely, for T ∈ CB(Sp′ , E), denoting by iN : SNp′ → Sp′ the canonical completely isometric

inclusion, we derive that T ◦ iN ∈ CB(SNp′ , E) with ‖T ◦ iN‖CB(SN
p′ ,E) ≤ ‖T‖CB(Sp′ ,E), for each N ∈ N.

Now, defining XT ∈ M∞(E) by XT = (Teij)i,j it is plain, through the identity SNp ⊗̂minE =

CB(SNp′ , E), that

‖XT ‖Swp [E] = sup
N
‖ρN (XT )‖SNp ⊗̂minE

= sup
N
‖T ◦ iN‖CB(SN

p′ ,E) ≤ ‖T‖CB(Sp′ ,E).

Hence, we have proved the isometry Swp [E] = CB(Sp′ , E). To see that this isometry is complete,

we need to show that, for each n, the spaces Mn

(
Swp [E]

)
and Mn

(
CB(Sp′ , E)

)
are isometric. Recall

that

Mn

(
CB(Sp′ , E)

) 1
= CB(Sp′ ,Mn(E))

1
= Swp [Mn(E)],

where the last equality follows from the first part of the proof. To finish it only remains to see

that Swp [Mn(E)]
1
= Mn

(
Swp [E]

)
. Indeed, by [20, Cor. 8.1.3 and Cor. 8.1.7], for all N the spaces

SNp ⊗̂minMn(E) and Mn

(
SNp ⊗̂minE

)
are completely isometric. Therefore, for each X ∈Mn

(
Swp [E]

)
,

it holds

‖X‖Mn(Swp [E]) = sup
N
‖(ρN )n(X)‖Mn(SNp ⊗̂minE) = sup

N
‖(ρN )n(X)‖SNp ⊗̂minMn(E) = ‖X‖Swp [Mn(E)].

�

As in the Banach space setting, we can replace Sp′⊗̂minE by Swp′ [E] in the quotient description

of the norm dop.

Theorem 2.5. For 1 ≤ p ≤ ∞, the mapping

Q̃p : Swp′ [E]⊗̂projSp[F ]→ E⊗̂dopF,

is a complete 1-quotient.
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Proof. We have just to prove that Q̃p defines a complete contraction. The fact that Qp is a complete

1-quotient and the complete isometry Sp′⊗̂minE ↪→ Swp′ [E] do the rest.

Let us denote by τk : Swp′ [E] → Skp′ ⊗min E the truncation mapping given by τk ((xij)i,j) =

(xij)
k
i,j=1. It is plain, due to the operator space structure of Swp′ [E], that τk is a complete contraction.

We note by τ̃k the “same” truncation mapping but on a different space, τ̃k : Sp[F ]→ Sp[F ].

Let (xij) ∈ Swp′ [E] and (yij) ∈ Sp[F ]. To see that
∑

i,j xij ⊗ yij converges in E⊗̂dopF we prove

that (uk) is a Cauchy sequence, where uk =
∑n

i,j=1 xij ⊗ yij . By definition,

dop(uk − ul) ≤
∥∥∥τk(xij)− τ l(xij)∥∥∥

Sm
p′⊗minE

∥∥∥τ̃k(yij)− τ̃ l(yij)∥∥∥
Sp[F ]

.

Note that
∥∥τk(xij)− τ l(xij)∥∥Sm

p′⊗minE
≤ 2 ‖(xij)‖Sw

p′ [E] and by [45, Lemma 1.12],
∥∥τ̃k(yij)− τ̃ l(yij)∥∥Sp[F ]

≤
ε for k, l sufficiently large. So, (uk)k converges to u =

∑
i,j xij⊗yij and dop(u) ≤ ‖(xij)‖Sw

p′ [E] ‖(yij)‖Sp[F ].

Thus, Q̃p is well defined.

Now, let n ∈ N fixed. We need to prove that∥∥∥(Q̃p)n : Mn

(
Swp′ [E]⊗̂projSp[F ]

)
→Mn

(
E⊗̂dopF

)∥∥∥ ≤ 1.

Recall that, given r ∈ N and Y ∈Mr(Sp[F ]), by [45, Lemma 1.12], it holds∥∥∥(τ̃k)r(Y )− Y
∥∥∥
Mr(Sp[F ])

−→
k→∞

0.

For A ∈ Mn

(
Swp′ [E]⊗projSp[F ]

)
take any representation of the form A = α(X ⊗ Y )β, with

X ∈ Mq

(
Swp′ [E]

)
, Y ∈ Mr (Sp[F ]), α ∈ Mn,q·r, β ∈ Mq·r,n. By arguing as in the beginning of the

proof we obtain

(Qp)n(τk ⊗ τ̃k)n(A) = (Q̃p)n(τk ⊗ τ̃k)n(A) −→
k→∞

(Q̃p)n(A), in Mn(E⊗̂dopF ).

Also, the fact that Qp is a complete 1-quotient implies, for each k,∥∥∥(Qp)n(τk ⊗ τ̃k)n(A)
∥∥∥
Mn(E⊗̂dopF )

=
∥∥∥(Qp)n

(
α(τkq (X)⊗ τ̃kr (Y )

)
β
∥∥∥
Mn(E⊗̂dopF )

≤ ‖α‖Mn,q·r · ‖τkq (X)‖Mq(Skp′⊗minE) · ‖τ̃
k
r (Y )‖Mr(Sp[F ]) · ‖β‖Mq·r,n

≤ ‖α‖Mn,q·r · ‖X‖Mq

(
Sw
p′ [E]

) · ‖τ̃kr (Y )‖Mr(Sp[F ]) · ‖β‖Mq·r,n .

Taking limit as k →∞ we obtain∥∥∥(Q̃p)n(A)
∥∥∥
Mn(E⊗̂dopF )

≤ ‖α‖Mn,q·r · ‖X‖Mq

(
Sw
p′ [E]

) · ‖Y ‖Mr(Sp[F ]) · ‖β‖Mq·r,n .

Since this holds for every representation of A it is clear that∥∥∥(Q̃p)n(A)
∥∥∥
Mn(E⊗̂dopF )

≤ ‖A‖
Mn

(
Sw
p′ [E]⊗projSp[F ]

).
�

Two direct consequences of the previous theorem are stated in the next corollary:

Corollary 2.6. Let 1 ≤ p ≤ ∞ then:
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(1) The bilinear mapping associated to Q̃p, Bp : Swp′ [E]× Sp[F ]→ E⊗̂dopF given by

Bp ((xij), (yij)) =
∑
i,j

xij ⊗ yij

is jointly completely bounded with ‖Bp‖jcb = 1.

(2) For each u ∈ E⊗̂dopF ,

‖u‖dop = inf
{
‖(xij)‖Sw

p′ [E] ‖(yij)‖Sp[F ] : u = Q̃p ((xij)⊗ (yij))
}
.

Now we show that certain two-sided multiplication operators are completely right p-nuclear. This

is closely related to the results in [37], and the argument here follows closely [20, Prop. 12.2.2]. As

in [45, p. 21], if E is an operator space, x ∈ M∞(E) and a ∈ M∞, we denote by a · x (resp. x · a)

the matrix product, that is,

(a · x)ij =
∑
k

aikxkj ,

(
resp. (x · a)ij =

∑
k

xikakj

)
.

If b ∈M∞, we denote a · x · b = a · (x · b) = (a · x) · b.

Proposition 2.7. Let 1 ≤ p ≤ ∞ and a, b ∈ S2p. Then the multiplication operator M(a, b) : x 7→
a · x · b belongs to N p

o (Sp′ , S1) and satisfies νpo (M(a, b)) ≤ ‖a‖S2p
‖b‖S2p

.

Proof. Write a = (aij) and b = (bij). Let us first observe that we may assume that only finitely

many entries in each of these two infinite matrices are nonzero. To that effect, suppose that we

know the result for finitely supported matrices, and let a, b ∈ S2p. We can find sequences (ak), (bk)

in S2p of finitely supported matrices converging to a and b, respectively, in the S2p norm. Since for

x ∈ Sp′ we have

akxbk − alxbl = (ak − al)xbk + alx(bk − bl),
it follows that

(
M(ak, bk)

)
k

is a Cauchy sequence in N p
o (Sp′ , S1) and therefore converges in the

same space. Since the norm in CB(Sp′ , S1) is dominated by that of N p
o (Sp′ , S1), it follows that the

limit of
(
M(ak, bk)

)
k

has to be M(a, b), and therefore M(a, b) ∈ N p
o (Sp′ , S1) with νpo (M(a, b)) ≤

‖a‖S2p
‖b‖S2p

.

Therefore, from now on we assume a = (aij)
n
i,j=1 and b = (bij)

n
i,j=1. Let ε = [εij ]

n
i,j=1 be the

matrix of matrix units. For x = (xij) ∈ Sp′ ,

(axb)ij =
∑
k,l

εij ⊗ aikxklblj

=
∑
k,l

εij ⊗ aikεkl(x)blj .

From the above calculation

M(a, b)(x) = Q̃p
(
ε⊗ (a · ε · b)

)
(x),

hence M(a, b) = Q̃p
(
ε⊗ (a · ε · b)

)
and

νpo
(
M(a, b)

)
≤ ‖ε‖Sw

p′ [Sp] ‖a · ε · b‖Sp[S1] .

Note that

ε = [εij ]
n
i,j=1 ∈ Swp′ [Sp] = CB(Sp, Sp)
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is just the projection onto an initial block Snp , and thus ‖ε‖Sw
p′ [Sp] = 1.

On the other hand, by [45, Theorem 1.5 and Lemma 1.6],

‖a · ε · b‖Snp [S1] ≤ ‖a‖Sn2p ‖ε‖Mn(S1) ‖b‖Sn2p .

Now,

ε = [εij ]
n
i,j=1 ∈Mn(S1) = Mn(S′∞) ⊆ CB(S∞,Mn)

is once again just a projection onto an initial block, so ‖ε‖Mn(S1) = 1. Therefore, we conclude that

νpo
(
M(a, b)

)
≤ ‖a‖S2p

‖b‖S2p
. �

The multiplication operators defined in the previous proposition are the canonical prototypes of

completely right p-nuclear mappings: we show below that a mapping is completely right p-nuclear

if and only if it admits a factorization through one such multiplication operator (similar to the

Banach space framework as in (5)).

Theorem 2.8. For a linear map T : E → F and 1 ≤ p ≤ ∞, the following are equivalent:

(a) T is completely right p-nuclear.

(b) There exist a, b ∈ S2p such that T admits a factorization

E
T //

U
��

F

Sp′
M(a,b)

// S1

V

OO

Moreover, in this case

νpo (T ) = inf
{
‖U‖cb ‖V ‖cb ‖a‖S2p

‖b‖S2p

}
where the infimum is taken over all factorizations as in (b).

Proof. (b) ⇒ (a): This follows from Propositions 2.2 and 2.7.

(a) ⇒ (b): Let 1 ≤ p < ∞, assume that T ∈ N p
o (E;F ) with νpo (T ) < 1. Then there ex-

ists u ∈ E′⊗̂dopF such that Jp(u) = T and ‖u‖dop < 1. By Theorem 2.3, we can in turn find

X ∈ Sp′⊗̂minE
′, Y ∈ Sp[F ] such that u = Qp(X ⊗ Y ), ‖X‖Sp′ ⊗̂minE′

< 1 and ‖Y ‖Sp[F ] < 1. On the

one hand, the representation of the minimal tensor product and its symmetry allows us to think of

X as a mapping U in CB(E,Sp′) with ‖U‖cb < 1. On the other hand, by [45, Thm. 1.5], we can

write Y = a · Ȳ · b with ‖a‖S2p
< 1, ‖b‖S2p

< 1 and
∥∥Ȳ ∥∥

S∞[F ]
< 1. Also, since S∞[F ] = S∞⊗̂minF

completely isometrically embeds into CB(S1, F ), Ȳ canonically induces a linear map V : S1 → F

with ‖V ‖cb =
∥∥Ȳ ∥∥

S∞[F ]
. Chasing down the formulas it is easy to see that T = V ◦M(a, b) ◦ U

(in the spirit of [20, Prop. 12.2.3]), giving us the desired factorization. Finally, for p = ∞ this is

derived directly from the definition of right ∞-nuclear with M(a, b) = Id. �
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3. operator p-compact mappings

Following [49, 16] we say that a linear mapping between Banach spaces T : X→ Y is p-compact

if T (BX) is a relatively p-compact set. That is, there exists a sequence (yn)n ∈ Y such that

(6) T (BX) ⊂

{ ∞∑
n=1

αnyn :

∞∑
n=1

|αn|p
′ ≤ 1

}
and

∞∑
n=1

‖yn‖p <∞.

The class of p-compact mappings is denoted by Kp, and endowed with the norm

(7) κp(T ) := inf{‖(yn)n‖`p(Y)},

where the infimum runs all over the sequences (yn)n ∈ Y as in Equation (6).

This notion should not be confused with the homonymous concept studied in the late seventies

and early eighties by [42] and [22] (see also [13]). Nowadays, this older class is sometimes referred

to as “classical p-compact” mappings (as proposed in [39]). We will not deal with such mappings

in this paper.

The following characterization of p-compactness in terms of commutative diagrams is well-known

to experts, but we were unable to find an explicit reference for it. Thus, we include a sketch of its

proof for completeness.

Proposition 3.1. Let X and Y be Banach spaces, and T : X→ Y a linear mapping. The following

are equivalent:

(1) T : X→ Y is p-compact

(2) There exist a Banach space Z, a mapping Θ ∈ N p(Z;Y) and a bounded mapping R ∈
L(X,Z/ker Θ) with ‖R‖ ≤ 1 such that the following diagram commutes

(8) X
T //

R $$

Y Z
Θoo

π{{{{
Z/ker Θ,

Θ̃

OO

Moreover,

κp(T ) = inf{νp(Θ) : Θ ∈ N p(Z;Y) as in (8)}.

Proof. (1)⇒ (2): This is essentially contained in the proof of [24, Proposition 2.9.] (which is based

on [49, Theorem 3.2.]). A careful look shows that it also holds

inf{νp(Θ) : Θ ∈ N p(Z; Y) as in (8)} ≤ κp(T ).

(2)⇒ (1): Given ε > 0 we have the following representation for Θ:

Θ =
∑
n∈N

x′n ⊗ yn,

where (xn)n∈N ∈ `wp′(Z
′), (yn)n∈N ∈ `p(Y) such that ‖(xn)‖`w

p′ (Z
′) · ‖(yn)‖`p(Y) ≤ (1 + ε)νp(Θ).
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Let us show that T = Θ̃R is p-compact. Indeed, if x ∈ BX then ‖Rx‖Z/ker Θ ≤ 1. Thus, there is

z ∈ Z such that πz = Rx, ‖z‖Z ≤ 1 + ε. Then, Tx = Θ̃Rx = Θ̃πz = Θz =
∑

n∈N x
′
n(z)yn. Since

‖(x′n(z))‖`p′ ≤ ‖(xn)‖`w
p′ (Z

′)‖z‖Z ≤ (1 + ε)‖(xn)‖`w
p′ (Z

′),

this shows that Tx lies in the p-convex hull of the sequence (yn · (1 + ε)‖(xn)‖`w
p′ (Z

′))n∈N. This

implies that T is p-compact and moreover, κ(T ) ≤ (1 + ε)2νp(Θ). �

We now look for a definition of p-compact mappings in the noncommutative framework. We

choose to define it as in Equation (8) since this will allow us to provide the ideal with an operator

space structure. Later on, we will see an equivalent description which is more obviously similar to

the original Banach space definition (see Theorem 3.11).

Definition 3.2. Let E and F be operator spaces. A mapping T ∈ CB(E,F ) is called operator

p-compact if there exist an operator space G, a completely right p-nuclear mapping Θ ∈ N p
o (G,F )

and a completely bounded mapping R ∈ CB(E,G/ker Θ) with ‖R‖cb ≤ 1 such that the following

diagram commutes

(9) E
T //

R $$

F G
Θoo

πzzzz
G/ker Θ,

Θ̃

OO

where π stands for the natural 1-quotient mapping and Θ̃ is given by Θ̃(π(g)) = Θ(g).

The set of all operator p-compact mappings from E to F is denoted by Kop(E,F ). For T ∈
Kop(E,F ), we also define

κop(T ) := inf{νpo (Θ)},

where the infimum runs over all possible completely right p-nuclear mappings Θ ∈ N p
o (G,F ) as in

(9).

Proposition 3.3. Let E and F be operator spaces. The set Kop(E,F ) is a linear subspace of

CB(E,F ) and κop defines a norm for this space.

Proof. It is clear that κop(T ) ≥ 0, for all T ∈ Kop(E,F ). Also, κop(T ) = 0 implies, for each ε > 0,

the existence of a commutative diagram as (9) with νpo (Θ) < ε. Then, ‖Θ‖cb < ε and so ‖Θ̃‖cb < ε

from which it is derived that T = 0.

If T ∈ Kop(E,F ) and λ is a scalar, it is easy to see that λT ∈ Kop(E,F ) with κop(λT ) = |λ|κop(T ).

Now, let us consider T1, T2 ∈ Kop(E,F ). For each i = 1, 2 we have a commutative diagram:

E
Ti //

Ri $$

F Gi
Θioo

πizzzz
Gi/ker Θi

Θ̃i

OO
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where Gi is an operator space, Ri ∈ CB(E,Gi) with ‖Ri‖cb ≤ 1 and Θi ∈ N p
o (Gi, F ). Define

G = G1 ⊕∞ G2 and consider Θ : G→ F given by Θ(g1, g2) = Θ1g1 + Θ2g2. If we denote, for each

i = 1, 2, ρi : G → Gi the canonical restriction mapping we can write Θ = Θ1ρ1 + Θ2ρ2. Since N p
o

is a mapping ideal, we derive that Θ ∈ N p
o (G,F ) with νpo (Θ) ≤ νpo (Θ1) + νpo (Θ2).

We define Λ : G1/ker Θ1 ⊕∞ G2/ker Θ2 → G/ker Θ by Λ(π1g1, π2g2) = π(g1, g2), where π :

G → G/ker Θ is the natural 1-quotient mapping. It is clear that Λ is well defined and that it is

completely bounded with ‖Λ‖cb ≤ 1. And the same is true for the mapping R : E → G/ker Θ,

given by Rx = Λ(R1x,R2x), for any x ∈ E.

Now, we can assemble the following diagram:

E
T1+T2 //

R ##

F G
Θoo

π{{{{
G/ker Θ

Θ̃

OO

Straightforward computations show that the diagram is commutative and hence T1 +T2 belongs

to Kop(E,F ). Also, κop(T1 + T2) ≤ νpo (Θ) ≤ νpo (Θ1) + νpo (Θ2), for every Θ1 and Θ2 “admissible” for

the factorization of T1 and T2. Therefore, κop(T1 + T2) ≤ κop(T1) + κop(T2).

�

From the definition, it is straightforward to show that any T ∈ N p
o (E,F ) belongs to Kop(E,F )

with κop(T ) ≤ νpo (T ).

We are now interested in giving an operator space structure to Kop based on the relation, in the

Banach space setting, of the right p-nuclear and p-compact ideals.

Definition 3.4. A mapping ideal A is surjective if for each completely 1-quotient mapping Q :

G � E we have T ∈ A(E,F ) whenever TQ ∈ A(G,F ). In this case, we have ‖T‖A = ‖TQ‖A for

every T ∈Mn(A(E,F )).

Definition 3.5. Given a mapping ideal A, its surjective hull Asur is the smallest surjective mapping

ideal that contains A.

We recall [46, Proposition 2.12.2] that for every operator space E there is a set I and a family

(ni)i∈I ⊂ N such that E is the quotient of `1({Sni1 : i ∈ I}). We denote the latter space by ZE and

QE : ZE � E the corresponding completely 1-quotient mapping. The space ZE is projective (see

for example [46, Chapter 24]).

Proposition 3.6. For every E and F operator spaces we have the following characterization of

the surjective hull

Asur(E,F ) = {T ∈ CB(E,F ) : TQE ∈ A(E,F )},
with ‖T‖Asur = ‖TQE‖A.

Proof. We define

U(E,F ) = {T ∈ CB(E,F ) : TQE ∈ A(E,F )},
endowed with the operator space norm given by ‖T‖U = ‖TQE‖A, for every T ∈Mn(U(E,F )).
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We now show that U is a mapping ideal. Indeed, if T ∈Mn(U(E,F )) we obviously have

‖T‖U(E,F ) = ‖TQE‖A ≥ ‖TQE‖cb = ‖T‖cb.

Let T ∈ Mn(U(E,F )), R ∈ CB(E0, F ), S ∈ CB(E,F0). Since ZE0 is projective, given ε > 0, there

is a lifting Lε ∈ CB(ZE0 , ZE) of RQE0 with ‖Lε‖cb ≤ (1 + ε)‖R‖cb such that the following diagram

commutes

E0
R // E

Ti,j // F
S // F0

Z0

QE0

OOOO

Lε

// ZE

QE

OOOO
.

Then, for every 1 ≤ i, j ≤ n we have STi,jRQE0 = STi,jQELε ∈ A(ZE0 , F0) and hence STi,jR ∈
U(E0, F0). Moreover, by the ideal property of A,

‖SnTR‖Mn(U(E0,F0)) = ‖SnTRQE0‖Mn(A(ZE0
,F0)) = ‖SnTQELε‖Mn(A(ZE0

,F0))

≤ ‖SnTQE‖Mn(A(ZE ,F0))(1 + ε)‖R‖cb
≤ (1 + ε)‖S‖cb‖T‖Mn(U(E,F ))‖R‖cb.

We now prove that the mapping ideal U is surjective. Let Q : G � E be a complete 1-quotient

mapping and T ∈ CB(E,F ) such that TQ ∈ U(G,F ). Since ZE is projective and QQG : ZG � E is

a complete 1-quotient mapping, given ε > 0, there is a lifting of QE , Lε : ZE → ZG with cb-norm

less than or equal to 1 + ε.

We have TQE = TQQGLε ∈ A(ZE , F ) since TQQG ∈ A(ZG, F ). Then, T ∈ U(E,F ). Also, if

T ∈Mn(U(E,F )) we obtain

‖T‖U = ‖TQE‖A = ‖TQQGLε‖A ≤ (1 + ε)‖TQQG‖A
= (1 + ε)‖TQ‖U ≤ (1 + ε)‖T‖U .

Note that, by the definition, U(E,F ) ⊂ Asur(E,F ): if T ∈ U(E,F ), we have TQE ∈ A(ZE , F ) ⊂
Asur(ZE , F ). Since Asur is surjective we obtain that T ∈ Asur(E,F ).

We have shown that U is a surjective mapping ideal (which obviously contains A). Then, by

minimality we have the reverse inclusion. �

Proposition 3.7. Let E be a projective operator space. Then, T ∈ Kop(E,F ) if and only if

T ∈ N p
o (E,F ) and κop(T ) = νpo (T ).

Proof. Let T ∈ Kop(E,F ), and consider a factorization as in (9). Given ε > 0, since E is projective,

there is a lifting of R, R̃ε ∈ CB(E,G) with ‖R̃ε‖ ≤ 1+ε, such that the following diagram commutes
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E
T //

R̃ε

%%

R $$

F G
Θoo

πzzzz
G/ker Θ.

Θ̃

OO

Then, T = ΘR̃ε ∈ N p
o (E,F ) and νpo (T ) ≤ (1 + ε)νpo (Θ). Observe that this holds for every Θ

verifying Equation (9). Thus, by definition of the norm κop(T ), we obtain νpo (T ) ≤ (1 + ε)κop(T ) and

the result follows. �

Proposition 3.8. Let E and F be operator spaces. Then T ∈ Kop(E,F ) if and only if TQE ∈
N p
o (ZE , F ) and κop(T ) = νpo (TQE).

Proof. If T ∈ Kop(E,F ), then TQE ∈ Kop(ZE , F ). Now by Proposition 3.7, TQE ∈ N p
o (ZE , F ) and

also νpo (TQE) = κop(TQE) ≤ κop(T ), since ZE is projective.

Reciprocally, if TQE ∈ N p
o (ZE , F ), we define R ∈ CB(E,ZE/ker Θ) in the following way: Rx :=

πy where QEy = x. It is not difficult to check that R is well defined and also ‖R‖cb ≤ 1. If we

denote Θ := TQE we have Θ̃Rx = π̃y = Θy = TQEy = Tx for every x ∈ E. Thus, the following

diagram commutes

E
T //

R

$$

F ZE
Θoo

πzzzz
ZE/ker Θ.

Θ̃

OO

Therefore, T is an operator p-compact mapping and κop(T ) ≤ νpo (TQE). This concludes the

proof. �

We have shown that for every E and F operator spaces, we have the equality (as Banach spaces)

Kop(E,F ) = (N p
o )sur(E,F ).

This induces a natural operator space structure for Kop(E,F ). Indeed, if T ∈Mn(Kop(E,F )), we

define

‖T‖Mn(Kop(E,F )) := ‖T‖Mn((N po )sur(E,F )) = ‖TQE‖Mn(N po (ZE ,F )).

As a consequence we can say that Kop is a mapping ideal through the following identification:

(10) Kop = (N p
o )sur.

In the Banach space setting, a continuous linear mapping is compact if it sends the unit ball

into a relatively compact set. Equivalently, it sends the unit ball into the closure of the convex

hull of a null sequence. In the operator space framework, if we look at how a mapping acts on the

“matrix unit ball” (see definition below) the previous conditions are not equivalent. Webster [52, 53]

noticed this and studied several notions of compactness: operator compactness, strong operator
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compactness, and matrix compactness. Let us recall the definition of “operator compactness” that

later we will naturally extend to the case of p-compactness.

If E is an operator space, a matrix set is a sequence of sets K = (Kn), where Kn ⊂Mn(E), for

all n. The closure of a matrix set means the closure of each set of the sequence in the corresponding

matrix space. The matrix unit ball is the matrix set
(
BMn(E)

)
.

Given X ∈ S∞[E], Webster defined the absolutely matrix convex hull of X to be the matrix set

co(X) where(
co(X)

)
k

= {v ∈Mk(E) : ∃σ ∈Mk(M
fin
∞ ), ‖σ‖Mk(S1) ≤ 1 such that (σ ⊗ id)X = v}.

A mapping T ∈ CB(E,F ) is operator compact if the image by T of the matrix unit ball of E is

contained in co(Y ), for some Y ∈ S∞[F ].

Based on the work of Webster we now define the notion of p-absolutely matrix convex hull.

Definition 3.9. Let E be an operator space and X ∈ Sp[E], for 1 ≤ p ≤ ∞, we define the

p-absolutely matrix convex hull of X to be the matrix set cop(X) where(
cop(X)

)
k

= {v ∈Mk(E) : ∃σ ∈Mk(M
fin
∞ ), ‖σ‖Mk(Sp′ )

≤ 1 such that (σ ⊗ id)X = v}.

We say that a matrix set K = (Kn) in E is operator p-compact if K is is contained in cop(X),

for some X ∈ Sp[E].

We are using the term “operator p-compact” for two seemingly different notions, but they will

turn out to be the same. If we denote by BE the matrix unit ball of E, we will prove that T : E → F

is operator p-compact if and only if the image under T of the matrix unit ball of E is an operator

p-compact matrix set in F .

Note that the ∞-absolutely matrix convex hull is Webster’s absolutely matrix convex hull, and

thus operator ∞-compact mappings are the same as operator compact mappings.

Remark 3.10. Given 1 ≤ p ≤ ∞, for any X ∈ Sp[E] and k ∈ N we have(
cop(X)

)
k

= {v ∈Mk(E) : ∃σ ∈Mk(Sp′), ‖σ‖Mk(Sp′ )
≤ 1 such that (σ ⊗ id)X = v},

where, in the case p = 1 the space Sp′ should be replaced by M∞.

Proof. Indeed, let us denote by Ck the set on the right hand side. For 1 < p ≤ ∞, it is enough

to show that Ck is closed. Consider Ψ : Mk(Sp′) → Mk(E) defined by σ 7→ (σ ⊗ id)(X). Note

that the image by Ψ of BMk(Sp′ )
, the closed unit ball of Mk(Sp′), is exactly Ck. Take a sequence

(σl)l ∈ BMk(Sp′ )
such that Ψ(σl) → v ∈ Mk(E). We have to see that v = Ψ(σ) for certain

σ ∈ Mk(S
′
p) with ‖σ‖Mk(Sp′ )

≤ 1. Since BMk(Sp′ )
is weak∗ sequentially compact (since the predual

of Mk(Sp′) is separable) there is a subsequence (σlj )j weak∗ convergent to an element σ ∈ BMk(Sp′ )
.

By uniqueness of the limit our conclusion follows once proving that for all matrices v′ ∈ Mk(E
′)

we have the convergence of the scalar pairing (in the sense of [20, 1.1.24])

〈Ψ(σlj ), v
′〉 → 〈Ψ(σ), v′〉.

Now,

〈Ψ(σlj ), v
′〉 = 〈(σlj ⊗ id)(X), v′〉 = 〈σlj , (id⊗ v

′)(X)〉 → 〈σ, (id⊗ v′)(X)〉 = 〈Ψ(σ), v′〉.
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For p = 1, the previous argument (replacing Sp′ by M∞) shows that
(
co1(X)

)
k
⊂ Ck. The other

inclusion runs as follows. Recall, using the notation as in Theorem 2.5, that any X ∈ S1[E] can be

approximated by its “truncations” {τ̃m(X)}m [45, Lemma 1.12] and denote by ρm : M∞ →Mm the

truncated mapping between these matrix spaces. Now, for v = (σ⊗ id)X ∈ Ck with σ ∈Mk(M∞),

we have to see that {((ρm)kσ ⊗ id)X}m ⊂ co1(X) approximates v. Indeed,

‖v − ((ρm)kσ ⊗ id)X‖Mk(E) = ‖((σ − (ρm)kσ)⊗ id)X‖Mk(E) = ‖(σ ⊗ id)(X − (τ̃m)k(X))‖Mk(E)

≤ ‖X − (τ̃m)k(X)‖Mk(S1[E]) −→
m→∞

0.

�

The following result shows that the first definition of p-compactness (the one which involves the

factorization through completely right p-nuclear mappings) and the definition based on Webster’s

work are the same. We highlight the analogy presented between Equations (7) and (11), below.

Theorem 3.11. Let T : E → F be a completely bounded mapping and 1 ≤ p ≤ ∞. Then T is

operator p-compact if and only if T (BE) is an operator p-compact matrix set in F . Moreover,

(11) κop(T ) = inf{‖Y ‖Sp[F ] : T (BE) ⊂ cop(Y )}.

Proof. Suppose T is operator p-compact. Without loss of generality we suppose that κop(T ) < 1.

By the commutative diagram given in (9) there is a completely right p-nuclear mapping Θ : G→ F

with νpo -norm less than 1. It suffices to see that Θ is operator p-compact, since T (BE) is contained

in Θ(BG). By Theorem 2.3 we can write Θ = Jp ◦ Qp(X ⊗ Y ) where ‖X‖Sp′ ⊗̂minG′
< 1 and

‖Y ‖Sp[F ] < 1. For g ∈ Mn(G) of norm less than one, we will show that Θng ∈ (cop(Y ))n.

Indeed, for 1 < p ≤ ∞, since X ∈ Sp′⊗̂minG
′ we derive X ′ ◦ ιG ∈ CB(G,Sp′). For p = 1, being

X ∈ S∞⊗̂minG
′ we obtain X ′ ◦ ιG ∈ CB(G,M∞). Consider σ := (X ′ ◦ ιG)n g ∈Mn(Sp′) (replacing

Sp′ by M∞ in the case p = 1), then, ‖σ‖Mn(Sp′ )
< 1 and it is not hard to check that

Θng = (σ ⊗ id)(Y ).

Then, T (BE) ⊂ Θ(BG) ⊂ cop(Y ) and hence inf{‖Y ‖Sp[F ] : T (BE) ⊂ cop(Y )} < 1.

For the converse, let T : E → F be an operator p-compact mapping with inf{‖Y ‖Sp[F ] : T (BE) ⊂
cop(Y )} < 1. We begin by considering the case 1 < p <∞. Denote by Θ : Sp′ → F , the operator

given by Jp ◦Bp(id, Y ), which by definition is in N p
o since id ∈ Swp′ [Sp] = CB(Sp, Sp). Observe that

by Corollary 2.6 (1), νpo (Θ) < 1. Remark 3.10 asserts that for each x ∈ E there is σ ∈ Sp′ such

that Tx = (σ ⊗ id)(Y ). Defining Rx := [σ] we have the following commutative diagram

E
T //

R $$

F Sp′
Θoo

πzzzz
Sp′/ker Θ,

Θ̃

OO .
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Note that R is well defined. Moreover, if x ∈ BMk(E) by hypothesis Tkx = (σ̃ ⊗ id)(Y ), for

certain σ̃ with ‖σ̃‖Mk(Sp′ )
≤ 1. Checking coordinates we have T (xij ) = (σ̃i,j ⊗ id)(Y ) and therefore

R(xi,j) = [σ̃i,j ]. Hence, Rkx = ([σ̃i,j ])i,j) and then ‖R‖cb ≤ 1. We conclude that T ∈ Kop(E;F ) and

κop(T ) ≤ νpo (Θ) < 1.

For p = 1, we have Y ∈ S1[F ] = S1⊗̂projF . Since the projective tensor norm satisfies the

Embedding Lemma (see [18] or [11]), there is a completely isometric embedding κ : S1⊗̂projF →
S
′′
1 ⊗̂projF . Now, Θ = J1 ◦ κ(Y ) belongs to N 1

o (M∞, F ), where J1 : S
′′
1 ⊗̂projF → S

′′
1 ⊗̂minF is the

canonical mapping. The rest of the argument follows as in the previous case.

For p = ∞, we have Y ∈ S∞[F ] and so B∞(id, Y ) belongs to S∞⊗̂do∞F . Since do∞ is finitely

generated and S∞ is locally reflexive, we can appeal again to the Embedding Lemma [11] to get

a completely isometric embedding κ : S∞⊗̂do∞F → M∞⊗̂do∞F . Hence, Θ = J∞ ◦ κ ◦ B∞(id, Y )

belongs to N∞o (S1, F ) and the proof finishes as in the two previous cases. �

The previous theorem, together with the relation presented in Equation (10), allows us to endow

Webster’s class (of operator compact mappings) with a natural operator space structure, showing

that this class is indeed a mapping ideal. Namely, it is exactly the ideal Ko∞.

Some final questions

We present some open questions regarding the mapping ideal Kop.

In parallel to the Banach space case, we say that a mapping ideal (A,A) and an operator space

tensor norm α are associated, denoted (A,A) ∼ α if for every pair of finite-dimensional operator

spaces (E,F ) we have a complete isometry A(E,F ) = E′⊗αF, given by the canonical map. Notice

that since this definition is based only on finite-dimensional spaces, two different mapping ideals

can be associated to the same tensor norm (and vice versa). For example, from Definition 2.1 it is

clear that dop is associated to the mapping ideal N p
o .

Recall that an operator space tensor norm α is called left-injective if for any operator spaces

E1, E2, F and a complete isometry i : E1 → E2, the mapping

i⊗ idF : E1 ⊗α F → E2 ⊗α F

is completely isometric. Given an operator space tensor norm we denote by /α the greatest left-

injective tensor norm that is dominated by α. This essentially mimics the notion given in the

context of normed spaces deeply described in [13, Chapter 20] and [48, Section 7.2].

In the Banach space setting, it is shown in [24, Theorem 3.3] that /dp is the tensor norm

associated to Kp. Therefore, is natural to ask if an analogous result holds in the operator space

framework.

Question 3.12. Is the operator space tensor norm /dop associated to the mapping ideal Kop?

This question is a particular case of the following more general one (whose statement is valid in

the Banach space context):

Question 3.13. Let A be a mapping ideal and α its associated operator space tensor norm. Is /α

associated to Asur?
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Note that dop ∼ N
p
o and, by Equation (10), we have Kop = (N p

o )sur. Thus an affirmative answer

to this question would provide also an answer to the first one. Result of this kind for the Banach

space setting, although sometimes hard to see it at first glance, are based on local techniques (e.g.,

[13, Proposition 20.9]) which are no longer valid in the operator space framework.

In [11] it is shown that if β ∼ Asur then β is left-injective. Therefore, since A ⊂ Asur we

have that β ≤ /α. An affirmative answer to Question 3.13 is obtained in [11] for the particular

case where α is left accessible (definition similar to the Banach space case). It is known in the

Banach space setting that dp satisfies this property ([13, Theorem 21.5], [48, Proposition 7.21.]),

but unfortunately we do not know yet whether this also holds for the operator space counterpart

dop.

Another interesting question, which involves the mapping ideal Ko∞, was posed by Webster in

his thesis [52, Section 4.1]:

Problem 3.14. Webster: “It is an open question as to whether the space of operator compact maps

must be closed in the cb-norm topology”.

In other words, if a sequence of operator compact mappings (Tn)n∈N converges to T in the

completely bounded norm (‖T − Tn‖cb → 0), does it imply that T is also an operator compact

map?

By Theorem 3.11, as a direct consequence of the Open Mapping Theorem we see that Problem

3.14 can be reformulated in terms of the following question.

Question 3.15. Are the norms κo∞ and ‖ · ‖cb equivalent on Ko∞?
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22 J.A. CHÁVEZ-DOMÍNGUEZ, VERÓNICA DIMANT, AND DANIEL GALICER

[37] T. Oikhberg. Completely bounded and ideal norms of multiplication operators and Schur multipliers. Integral

Equations Operator Theory, 66(3):425–440, 2010.

[38] E. Oja. Grothendieck’s nuclear operator theorem revisited with an application to p-null sequences. Journal of

Functional Analysis, 263(9):2876–2892, 2012.

[39] E. Oja. A remark on the approximation of p-compact operators by finite-rank operators. Journal of Mathematical

Analysis and Applications, 387(2):949–952, 2012.

[40] A. Pietsch. Ideale von operatoren in Banachräumen. Mitt. Math. Gesselsch. DDR, 1:1–14, 1968.
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Matemáticas, 110(2):863–880, 2016.

[52] C. Webster. Local operator spaces and applications. PhD thesis, University of California, 1997.

[53] C. Webster. Matrix compact sets and operator approximation properties. arXiv preprint math/9804093, 1998.

Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, USA

E-mail address: jachavezd@ou.edu
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