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We introduce the symmetric Radon–Nikodým property (sRN property) for finitely generated
s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this
property. As a consequence, if β is a projective s-tensor norm with the sRN property,
then for every Asplund space E , the canonical mapping

⊗̃n,s
β E ′ → (

⊗̃n,s
β ′ E)′ is a metric

surjection. This can be rephrased as the isometric isomorphism Qmin(E) =Q(E) for some
polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund
or Radon–Nikodým properties of different tensor products. As an application, results
concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as
a new proof of the well-known isometric isomorphism between nuclear and integral
polynomials on Asplund spaces. An analogous study is carried out for full tensor products.

© 2010 Elsevier Inc. All rights reserved.

0. Introduction

A result of Boyd and Ryan [5] and also of Carando and Dimant [9] implies that, for an Asplund space E , the space Pn
I (E)

of integral polynomials is isometric to the space Pn
N (E) of nuclear polynomials (the isomorphism between these spaces was

previously obtained by Alencar in [1,2]). In other words, if E is Asplund, the space of integral polynomials on E coincides
isometrically with its minimal hull (Pn

I )min(E) = Pn
N (E). This fact was used, for example, in [5,6,17] to study geometric

properties of spaces of polynomials and tensor products (e.g., extreme and exposed points of their unit balls), and in [7,8]
to characterize isometries between spaces of polynomials and centralizers of symmetric tensor products. When the above
mentioned isometry is stated as the isometric coincidence between a maximal ideal and its minimal hull, it resembles
the Lewis theorem for operator ideals and (2-fold) tensor norms (see [24] and [15, 33.3]). The Radon–Nikodým property for
tensor norms is a key ingredient for Lewis theorem.

The aim of this article is to find conditions under which the equality Q(E) = Qmin(E) holds isometrically for a maximal
polynomial ideal Q. In terms of symmetric tensor products, we want conditions on an s-tensor norms ensuring the isometry⊗̃n,s

β E ′ = (
⊗̃n,s

β ′ E)′ . To this end, we introduce the symmetric Radon–Nikodým property for s-tensor norms and show our
main result, a Lewis-type theorem (Theorem 2.2): if an s-tensor norm has the symmetric Radon–Nikodým property (sRN
property), then the canonical mapping

⊗̃n,s
\β/E ′ → (

⊗̃n,s
/β ′\E)′ is a metric surjection for every Asplund space E (see the nota-

tion below). As a consequence, if Q is the maximal ideal (of n-homogeneous polynomials) associated to a projective s-tensor
norm β with the sRN property, then Qmin(E) = Q(E) isometrically.
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As an application of this result, we reprove the isometric isomorphism between integral and nuclear polynomials on
Asplund spaces (note that the result proved in [5,9] is stronger). We also show that the ideal of extendible polynomials
coincide with its minimal hull for Asplund spaces, and obtain as a corollary that the space of extendible polynomials on E
has a monomial basis whenever E ′ has a basis.

We present examples of s-tensor norms associated to well-known polynomial ideals which have the sRN property. We
also relate the sRN property of an s-tensor norm with the Asplund property. More precisely, we show that, for β is projective
with the sRN, then β ′ preserves the Asplund property, in the sense that

⊗̃n,s
β ′ E is Asplund whenever E is. As an application,

we show that the space of extendible polynomials on E has the Radon–Nikodým property if and only if E is Asplund. One
might be tempted to infer that a projective β with the sRN property preserves the Radon–Nikodým property, but this is not
the case, as can be concluded from a result by Bourgain and Pisier [4]. However, we show that this is true with additional
assumptions on the space E .

In order to prove our main theorem, we must show an analogous result for full tensor norms, which we feel can
be of independent interest. It should be noted that, although we somehow follow some ideas of Lewis theorem’s proof
in [15, 33.3], that proof is based on some factorizations of linear operators and not on properties of bilinear forms.
Therefore, the weaker nature of the sRN property introduced in this work together with our multilinear/polynomial frame-
work makes our proof more complicated. As a consequence, we decided to postpone the proof of the main result to
Section 4. The article is then organized as follows: In Section 1 we recall same basic definitions and facts about the
theory of full and symmetric tensor norms and set some notation. In Section 2 we define the sRN property, state our
main theorem and prove the related results described above. We also exhibit some examples of tensor norms having
the sRN property. In Section 3 we consider the sRN property in full tensor products and show the Lewis-type result
for this spaces (Theorem 3.5). In Section 4 we give the proof of Theorem 2.2 and conclude the article with some ques-
tions.

We refer to [15] for the theory of tensor norms and operator ideals, and also for all undefined notation used throughout
the article. We also refer to [18–21] for symmetric tensor products and polynomial ideals.

1. Preliminaries

In this section we present the definitions and the general results that we use throughout the article.
A surjective mapping T : E → F is called a metric surjection if∥∥Q (x)

∥∥
F = inf

{‖y‖E : Q (y) = x
}
,

for all x ∈ E . As usual, a mapping I : E → F is called isometry if ‖Ix‖F = ‖x‖E for all x ∈ E . We will use the notation
1� and

1
↪→ to indicate a metric surjection or an isometry, respectively. We also write E

1= F if E and F are isometrically isomorphic
Banach spaces (i.e. there exists a surjective isometry I : E → F ). For a Banach space E with unit ball B E , we call the mapping

Q E : �1(B E )
1� E given by (ax)x �→ ∑

axx the canonical quotient mapping.
For a natural number n, a full tensor norm α of order n assigns to every n-tuple of Banach spaces (E1, . . . , En) a norm

α(· ;⊗n
i=1 Ei) on the n-fold (full) tensor product

⊗ n
i=1 Ei such that

(1) ε � α � π on
⊗ n

i=1 Ei .
(2) ‖⊗n

i=1Ti : (⊗ n
i=1 Ei,α) → (

⊗ n
i=1 Fi,α)‖ = ‖T1‖ . . .‖Tn‖ for each set of operators Ti ∈ L(Ei, Fi), i = 1, . . . ,n.

We say that α is finitely generated if for all Ei ∈ BAN (the class of all Banach spaces) and z in
⊗ n

i=1 Ei

α
(

z,
⊗

n
i=1 Ei

)
:= inf

{
α

(
z,

⊗
n
i=1Mn

)
: z ∈

⊗
n
i=1Mi

}
,

the infimum being taken over all n-tuples M1, . . . , Mn of finite-dimensional subspaces of E1, . . . , En respectively whose
tensor product contains z.

The name “full tensor norms” stresses the fact that they are defined on the full tensor product, to distinguish them from
the s-tensor norms, that are defined on symmetric tensor products.

We say that β is an s-tensor norm of order n if β assigns to each Banach space E a norm β(· ;⊗ n,s E) on the n-fold
symmetric tensor product

⊗ n,s E such that

(1) εs � β � πs on
⊗n,s E .

(2) ‖⊗n,s T : (⊗ n,s E, β) → (
⊗ n,s F , β)‖ = ‖T ‖n for each operator T ∈ L(E, F ).

β is called finitely generated if for all E ∈ BAN and z ∈ ⊗ n,s E

β
(

z,
⊗

n,s E
)

= inf
{
β
(

z,
⊗

n,s M
)

: M ∈ FIN(E), z ∈
⊗

n,s M
}
.



Author's personal copy

D. Carando, D. Galicer / J. Math. Anal. Appl. 375 (2011) 553–565 555

In this article we will only work with finitely generated tensor norms. Therefore, we will assume that all tensor norms
are always finitely generated.

If α is a full tensor norm of order n, then the dual tensor norm α′ is defined on FIN (the class of finite-dimensional Banach
spaces) by(⊗

n
i=1Mi,α

′) : 1=
[(⊗

n
i=1M ′

i,α
)]′

and on BAN by

α′(z,
⊗

n
i=1 Ei

)
:= inf

{
α′(z,

⊗
n
i=1Mn

)
: z ∈

⊗
n
i=1Mi

}
,

the infimum being taken over all n-tuples M1, . . . , Mn of finite-dimensional subspaces of E1, . . . , En respectively whose
tensor product contains z.

Analogously, for β an s-tensor norm of order n, its dual tensor norm β ′ is defined on FIN by(⊗
n,s M, β ′) : 1=

[(⊗
n,s M ′, β

)]′

and extended to BAN as above.
The projective and injective associates (or hulls) of α will be denoted, by extrapolation of the 2-fold case, as \α/ and

/α\ respectively (we refer to [15, 20.1] for the definitions of projective and injective 2-fold tensor norms). The projective
associate of α will be the (unique) smallest projective tensor norm greater than α. Following [15, Theorem 20.6] we can see
that \α/ satisfies(⊗

n
i=1�1(Ei),α

) 1
�

(⊗
n
i=1 Ei,\α/

)
.

The injective associate of α will be the (unique) greatest injective tensor norm smaller than α. As in [15, Theorem 20.7]
we have(⊗

n
i=1 Ei, /α\

) 1
↪→

(⊗
n
i=1�∞(B E ′

i
),α

)
.

It is rather easy to check that an n-linear form A belongs to (
⊗ n

i=1 Ei,\α/)′ if and only if A ◦ (Q E1 , . . . , Q En ) ∈
(
⊗ n

i=1�1(B Ei ),α)′ . Moreover, we have

‖A‖(
⊗n

i=1 Ei ,\α/)′ = ∥∥A ◦ (Q E1 , . . . , Q En )
∥∥

(
⊗n

i=1 Ei ,α)′ .

On the other hand, an n-linear form A is in (
⊗ n

i=1 Ei, /α\)′ if and only if it has an extension to �∞(B E ′
1
) × · · · ×

�∞(B E ′
n
) which belongs to (

⊗ n
i=1�∞(B E ′

i
),α)′ . Moreover, the norm of A in (

⊗ n
i=1 Ei, /α\)′ is the infimum of the norms in

(
⊗ n

i=1�∞(B E ′
i
),α)′ of all such extensions.

It is clear that a tensor norm α is injective if and only if α = /α\. Also, α is projective if and only if α = \α/.
Note that in our notation, the symbols “\” and “/” by themselves lose their original meanings, as well as the left and

right sides of α.
The projective and injective associates for a s-tensor norm β can be defined in a similar way, and they satisfy(⊗

n,s�1(E), β
) 1

�
(⊗

n,s E,\β/
)
,(⊗

n
i=1 E, /β\

) 1
↪→

(⊗
n,s�∞(B E ′), β

)
.

Again, the s-tensor norm β is injective or projective if and only if β = /β\ or β = \β/ respectively.
The description of the n-homogeneous polynomial Q belonging to (

⊗ n,s E,\β/)′ or to (
⊗ n,s E, /β\)′ is analogous to

that for multilinear forms.
It is not hard to check, following the ideas of [15, Proposition 20.10], the following duality relations for a full tensor

norms α or an s-tensor norm β:(
/α\)′ = \α′/,

(\α/
)′ = /α′\, (

/β\)′ = \β ′/,
(\β/

)′ = /β ′\.
Just as in [15, Corollary 20.8], if E1, . . . , En are L1,λ spaces for every λ > 1 then α and \α/ are equal on

⊗ n
i=1 Ei . On

the other hand, if E1, . . . , En are L∞,λ spaces for every λ > 1 then α and /α\ coincide in
⊗ n

i=1 Ei . A similar result holds
for s-tensor norms: if E is an L1,λ space for every λ > 1, then β and \β/ coincide on

⊗ n,s E . On the other hand, if E is an
L∞,λ space for every λ > 1, then β and /β\ coincide in

⊗n,s E .
Let us recall some definitions from the theory of Banach ideals of multilinear forms. A Banach ideal of continuous scalar

valued n-linear forms is a pair (U ,‖ · ‖U ) such that:
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(i) U(E1, . . . , En) = A ∩ L(E1, . . . , En) is a linear subspace of L(E1, . . . , En), the space of all continuous multilinear forms
on E1 × · · · × En , and ‖ · ‖U is a norm which makes the pair (U ,‖ · ‖U ) a Banach space.

(ii) If Ti ∈ L(Fi, Ei) (i = 1, . . . ,n), A ∈ U(E1, . . . , En) then A ◦ (T1 × · · · × Tn) ∈ U(F1, . . . , Fn) and∥∥A ◦ (T1 × · · · × Tn)
∥∥U(F1,...,Fn)

� ‖A‖U(E1,...,En)‖T1‖ . . .‖Tn‖.
(iii) (z1, . . . , zn) �→ z1, . . . , zn belongs to U(K, . . . ,K) and has norm 1.

Let (U ,‖ · ‖U ) be the Banach ideal of continuous scalar valued n-linear forms and, for A ∈ U(E1, . . . , En), define

‖A‖U max(E) := sup
{‖A|M1×···×Mn‖U(M1,...,Mn): Mi ∈ FIN(Ei)

} ∈ [0,∞].
The maximal kernel of U is the ideal given by Umax := {A ∈ Un: ‖A‖U max < +∞}. It is a Banach ideal with the norm

‖ · ‖U max . An ideal U is said to be maximal if U 1= Umax .
The minimal kernel of U is defined as the composition ideal Umin := U ◦ (F × · · · × F), where F stands for the ideal of

approximable operators. In other words, a multilinear form A belongs to Umin(E1, . . . , En) if it admits a factorization

E1 × · · · × En
A

T1×···×Tn

K

F1 × · · · × Fn

B (1)

where F1, . . . , Fn are Banach spaces, Ti : Ei → Fi (i = 1, . . . ,n) are approximable operator and B is in U(F1, . . . , Fn). The
minimal norm is given by

‖A‖U min := inf
{‖B‖U(F1,...,Fn)‖T1‖ . . .‖Tn‖

}
,

where the infimum runs over all possible factorizations as in (2). An ideal U is said to be minimal if U 1= Umin .
A Banach ideal of continuous scalar valued n-homogeneous polynomials is a pair (Q,‖ · ‖Q) such that:

(i) Q(E) = Q ∩ Pn(E) is a linear subspace of Pn(E) and ‖ · ‖Q is a norm which makes the pair (Q,‖ · ‖Q) a Banach space.
(ii) If T ∈ L(E1, E), P ∈ Q(E) then P ◦ T ∈ Q(E1) and

‖P ◦ T ‖Q(E1) � ‖P‖Q(E)‖T ‖n.

(iii) z �→ zn belongs to Q(K) and has norm 1.

Let (Q,‖ · ‖Q) be the Banach ideal of continuous scalar valued n-homogeneous polynomials and, for P ∈ Pn(E), define
‖P‖Qmax(E) := sup{‖P |M‖Q(M): M ∈ FIN(E)} ∈ [0,∞].

The maximal kernel of Q is the ideal given by Qmax := {P ∈ Pn: ‖P‖Qmax < +∞}. Endowed with the norm ‖ · ‖Qmax it is a

Banach ideal. An ideal Q is called maximal if Q 1=Qmax .
The minimal kernel of Q is defined as the composition ideal Qmin := Q ◦ F, where F stands for the ideal of approximable

operators. In other words, a polynomial P belongs to Qmin(E) if it admits a factorization

E
P

T

K

F

Q (2)

where F is a Banach space, T : E → F is an approximable operator and Q is in Q(F ). The minimal norm is given by
‖P‖Qmin := inf{‖Q ‖Q(F )‖T ‖n}, where the infimum runs over all possible factorizations as in (2). An ideal Q is said to be

minimal if Q 1=Qmin .
For properties about maximal and minimal ideals of homogeneous polynomials and examples see [19,21] and the refer-

ences therein.
If U is an ideal of n-linear forms, its associated full tensor norm α is the unique tensor norm satisfying

U(M1, . . . , Mn)
1=

(⊗
n
i=1Mi,α

)
,

for all finite-dimensional spaces Mi (i = 1, . . . ,n). As in the representation theorem [15, 17.1], if U is maximal then we have

U(E1, . . . , En)
1=

(⊗
n
i=1 Ei,α

′)′
,

for all Banach spaces Ei .
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If Q is a polynomial ideal, its associated s-tensor norm β is the unique tensor norm satisfying

Q(M)
1=

⊗
n,s
β M,

for every finite-dimensional space M . The polynomial representation theorem asserts that, if Q is maximal, then we have

Q(E)
1=

(⊗
n,s
β ′ E

)′
,

for every Banach space E [21, 3.2].
If U is a maximal ideal of n-linear forms associated to the tensor norm α, we will denote by \U/ the unique maximal

ideal associated to \α/ (i.e. \U/(E1, . . . , En) = (
⊗ n

i=1 Ei, /α
′\)′). Analogously, for Q a maximal ideal of n-homogeneous

polynomials associated to the s-tensor norm β we will denote by \Q/ the maximal ideal associated to \β/.
Let Q be a maximal polynomial ideal associated to the s-tensor norm β . There is a natural quotient mapping

from
⊗̃n,s

β E ′ 1
�Qmin(E) defined on

⊗ n,s E ′ by the following rule:
∑r

j=1
⊗nx′

j �→ ∑r
j=1

⊗nx′
j , where (

∑r
j=1

⊗nx′
j)(x) :=∑r

j=1 x′
j(x)n [19, Theorem 4.2]. We will denote by Jβ the composition mapping⊗̃

n,s
β E ′ 1

�Qmin(E) ↪→ Q(E)
1=

(⊗̃
n,s
β ′ E

)′
.

Sometimes Jβ will be referred to as the natural mapping from
⊗̃n,s

β E ′ to (
⊗̃n,s

β ′ E)′.

2. The symmetric Radon–Nikodým property

It is well know that the Radon–Nikodým property permitted to understand the full duality of a tensor norm π
and ε, describing conditions under which E ′ ⊗̃π F ′ = (E ⊗̃ε F )′ holds. Lewis in [24] obtained many results of the form
E ′ ⊗̃α F ′ = (E ⊗̃α′ F )′ or, in other words, results about Umin(E, F ′) = U(E, F ′) (if U is the maximal operator ideal associated
with α).

For Q a maximal ideal of n-homogeneous polynomials, we want to find conditions under which the next equality holds

Qmin(E) = Q(E). (3)

A related question is the following: if β is the s-tensor norm of order n associated to Q, when does the natural mapping

Jβ :
⊗̃

n,s
β E ′ 1

�Qmin(E) ↪→ Q(E)
1=

(⊗̃
n,s
β ′ E

)′
, (4)

become a metric surjection? Note that, in this case, we get the equality (3). To give an answer to this question we will need
the next definition. In a sense, it is a symmetric version of the one which appears in [15, 33.2].

Definition 2.1. A finitely generated s-tensor norm β of order n has the symmetric Radon–Nikodým property (sRN property)
if ⊗̃

n,s
β �1

1=
(⊗̃

n,s
β ′ c0

)′
.

Here equality means that canonical mapping Jβ : ⊗̃n,s
β �1 → (

⊗̃n,s
β ′ c0)

′ (as in (4) with E = c0) is an isometric isomorphism.

Since �1 and c0 are, respectively, L1,λ and L∞,λ spaces for every λ > 1, β and \β/ coincide in
⊗ n,s�1 and (\β/)′ = /β ′\

coincides with β ′ on
⊗ n,sc0. As a consequence, from the very definition we have that an s-tensor norm β has the sRN

property if and only if its projective hull \β/ does.
Also, �1 has the metric approximation property and, by [19, Corollary 5.2 and Proposition 7.5], the mapping Jβ is always

an isometry. Therefore, to prove that β has the sRN property we only have to check that Jβ is surjective. Note that, for Q
the maximal n-homogeneous polynomial ideal associated to β , our previous definition is equivalent to

Qmin(c0) = Q(c0), (5)

and the isometry is automatic.
Our interest in the sRN property is motivated by the following Lewis-type theorem:

Theorem 2.2. Let β be an s-tensor norm with the sRN property and E be an Asplund space. Then we have⊗̃
n,s
\β/E ′ 1

�
(⊗̃

n,s
/β ′\E

)′
,

i.e., the natural mapping J\β/ is a metric surjection.
As a consequence, if Q is the maximal ideal of n-homogeneous polynomials associated with β , then(\Q/

)min
(E) = \Q/(E) isometrically.
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One may wonder if the projective hull of the tensor norm β is really necessary in Theorem 2.2. Let us see that, in general,
it cannot be avoided. Take any injective s-tensor norm β and let Q be the associated maximal polynomial ideal. If T is the
dual of the original Tsirelson space (which is reflexive and therefore Asplund), then we can see that Q(T ) �= Qmin(T ). Indeed,
we consider for each m, the polynomial on �2 given by Pm(x) = ∑m

j=1 xn
j . Since β is injective, we have

‖Pm‖Q (�2) = β

(
m∑

j=1

e′
j ⊗ · · · ⊗ e′

j,
⊗

n,s�2

)

� /π\
(

m∑
j=1

e′
j ⊗ · · · ⊗ e′

j,
⊗

n,s�2

)

� Kε

(
m∑

j=1

e′
j ⊗ · · · ⊗ e′

j,
⊗

n,s�2

)
� K ,

where the second inequality (and the constant K ) are taken from [13, Lemma 2.6], and the third inequality is immediate. So
we have shown that ‖Pm‖Q (�2) is uniformly bounded. Since T does not contain (�m

2 )m nor (�m∞)m uniformly complemented
(see [14, pp. 33 and 66]), we can conclude that Q(T ) cannot be separable by [13, Proposition 3.9]. As a consequence, Q(T )

cannot coincide with Qmin(T ).
In order to prove Theorem 2.2, an analogous result for full tensor products (and multilinear forms) will be necessary. As

a consequence, we postpone the proof of Theorem 2.2 to Section 4.
Let us then present different tensor norms with the sRN. We begin with two basic examples. The following identities are

simple and well known:(⊗̃
n,s
π ′

s
c0

)′ =
(⊗̃

n,s
εs

c0

)′ =
⊗̃

n,s
πs

�1

and (⊗̃
n,s
ε′

s
c0

)′ =
(⊗̃

n,s
πs

c0

)′ =
⊗̃

n,s
εs

�1

(they easily follow from the analogous identities for full tensor products, since the symmetrization operator is a continuous
projection). Therefore, we have:

Example 2.3. The tensor norms πs and εs have the sRN property.

It should be noted the (2-fold) tensor norm ε does not have the classical Radon–Nikodým property [15, 33.2]. Therefore,
the sRN property defined here for s-tensor norms and in Section 3 for full tensor norms is less restrictive than the Radon–
Nikodým property for tensor norms.

In [1,2], Alencar showed that if E is Asplund, then integral and nuclear polynomials on E coincide, with equivalent
norms. Later, Boyd and Ryan [5] and, independently, Carando and Dimant [9], showed that this coincidence is isometric
(with a slightly more general assumption: that

⊗̃n,s
εs E does not contain a copy of �1). Note that the isometry between

nuclear and integral polynomials on Asplund spaces is an immediate consequence of Theorem 2.2 for β = πs:

Corollary 2.4. If E is Asplund, then Pn
I (E) = Pn

N (E) isometrically.

If we apply Theorem 2.2 and [19, Corollary 5.2] to β = εs , we obtain for E ′ with the bounded approximation property

Pn
e (E) = (Pn

e

)min
(E) =

⊗̃n,s

\εs/
E ′ isometrically,

where Pn
e stands for the ideal of extendible polynomials (see [27] and the references therein for properties and definitions).

Combining this with the main result in [22] we have:

Corollary 2.5. Let E be a Banach space such that E ′ has a basis. Then, the monomials associated to this basis is a Schauder basis for the
space of extendible polynomials Pn

e (E).

We now give other examples of s-tensor norms associated to well-known maximal polynomial ideals having the sRN
property.

The ideal of r-factorable polynomials. For n � r � ∞, a polynomial P ∈ Pn(E) is called r-factorable [20] if there is a positive
measure space (Ω,μ), an operator T ∈ L(E, Lr(μ)) and Q ∈ Pn(Lr(μ)) with P = Q ◦ T . The space of all such polynomials
will be denoted by Ln

r (E). With
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‖P‖Ln
r (E) = inf

{‖Q ‖‖T ‖n: P : E
T→ Lr(μ)

Q→K
}
.

Example 2.6. Let ρr
n be the s-tensor norm associated to Ln

r (r � n � 2). Then, ρr
n has the sRN property.

Proof. We can assume that r < ∞ since Ln∞(c0) = Pn
e (c0) [20, Proposition 3.4]. For P ∈ Ln

r (c0) there is a measure space
(Ω,μ), an operator T ∈ L(c0, Lr(μ)) and a polynomial Q ∈ Pn(Lr(μ)) with P = Q ◦ T . Since Lr(μ) is reflexive, as a direct
consequence of the Schauder theorem and the Schur property of �1, the operator T is approximable. On the other hand Q
is trivially in Ln

r (Lr(μ)). Hence P belongs to (Ln
r )

min(c0). �
The ideal of positively r-factorable polynomials. An n-homogeneous polynomial Q : F → K on a Banach lattice F is called
positive, if Q̌ : F → K is positive, i.e., Q̌ ( f1, . . . , fn) � 0 for f1, . . . , fn � 0. For n � r � ∞, a polynomial P ∈ Pn(E) is called
positively r-factorable [20] if there is a positive measure space (Ω,μ), an operator T ∈ L(E, Lr(μ)) and Q ∈ Pn(Lr(μ))

positive with P = Q ◦ T . The space of all such polynomials will be denoted by J n
r (E). With

‖P‖Ln
r (E) = inf

{‖Q ‖‖T ‖n: P : E
T→ Lr(μ)

Q→K
}
.

Using the ideas of the previous proof we have:

Example 2.7. Let δr
n be the s-tensor norm associated to J n

r (2 � n � r < ∞). Then, δr
n has the sRN property.

The ideal of r-dominated polynomials. For x1, . . . , xm ∈ E , we define

wr
(
(xi)

m
i=1

) = sup
x′∈B E′

(∑
i

∣∣〈x′, xi
〉∣∣r

)1/r

.

A polynomial P ∈ Pn(E) is r-dominated (for r � n) if there exists C > 0 such that for every finite sequence (xi)m
i=1 ⊂ E the

following holds(
m∑

i=1

∣∣P (xi)
∣∣ r

n

) n
r

� C wr
(
(xi)

m
i=1

)n
.

We will denote the space of all such polynomials by Dn
r (E). The least of such constants C is called the r-dominated norm

and denoted by ‖P‖Dn
r (E) .

In [10, Section 4], an n-fold full tensor norm αn
r′ was introduced, so that the ideal of dominated multilinear forms is dual

to αn
r′ . If we use the same notation for the analogous s-tensor norm, we have that (αn

r′ )′ is the s-tensor norm associated
to Dr .

Example 2.8. The s-tensor norm (αn
r′)′ has the sRN property.

Proof. By [26] we know that Dn
r = Pn ◦ Πr , where Πr is the ideal of r-summing operators (see [19] for notation). Thus,

for P ∈ Dn
r (c0) we have the factorization P = Q ◦ T where T : c0 → G is an r-summing operator and Q : G → K an n-

homogeneous continuous polynomial. We may assume without lost of generality that G = F ′ for a Banach space F (think
on the Aron–Berner extension). By [15, Proposition 33.5] the tensor norm (αr′,1)′ has the Radon–Nikodým property. Using
this, and the identity (αt)′ = (α′)t (which holds for every tensor norm of order two α) we easily get

Πr(c0, G) = Πr
(
c0, F ′) = (c0 ⊗α1,r′ F )′ = (F ⊗αr′,1 c0)

′

= F ′ ⊗(αr′,1)′ �1 = �1 ⊗(α1,r′ )′ F ′ = �1 ⊗(α1,r′ )′ G.

Therefore, we have proved that Πr(c0, G) = (Πr)
min(c0, G). Now is easy that Dn

r (c0) = (Dn
r )min(c0). �

A natural and important question about a tensor norm is if it preserves some Banach space property. The following result
shows that the sRN property is closely related to the preservation of the Asplund property under tensor products:

Theorem 2.9. Let E be Banach space and β a projective s-tensor norm with sRN property. The tensor product
⊗̃n,s

β ′ E is Asplund if and
only if E is Asplund.
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Proof. Necessity is clear. For the converse, let S be a separable subspace of
⊗̃n,s

β ′ E and let us see that it has a separable

dual. We can take (xk)k∈N a sequence of vectors in E such that S is contained in F = [⊗nxk: k ∈ N]. Since β ′ is injective,

we have the isometric inclusion S
1

↪→⊗̃n,s
β ′ F . Now, F ′ is separable (since E is Asplund) and therefore, by Theorem 2.2, the

mapping⊗̃
n,s
β ′ F ′ →

(⊗̃
n,s
β ′ F

)′

is surjective. So, (
⊗̃n,s

β ′ F )′ is a separable Banach space and hence is also S ′ (since we have a surjective mapping

(
⊗̃n,s

β ′ F )′ � S ′). �
The following is an application of the previous theorem to β = \εs/:

Corollary 2.10. For a Banach space E and n ∈ N, Pn
e (E) has the Radon–Nikodým property if and only if E is Asplund.

Looking at Theorem 2.9 a natural question arises: if β is a projective s-tensor norm with the sRN property, does
⊗̃n,s

β E
have the Radon–Nikodým property whenever E has the Radon–Nikodým property? Burgain and Pisier [4, Corollary 2.4]
presented a Banach space E with the Radon–Nikodým property such that E ⊗π E contains c0 and, consequently, does
not have the Radon–Nikodým property. This construction gives a negative answer to our question since the copy of c0 in
E ⊗π E is actually contained in the symmetric tensor product of E and πs (which has the sRN property) is equivalent to the
restriction of π to the symmetric tensor product.

However,
⊗̃n,s

β E inherits the Radon–Nikodým property of E if, in addition, E is a dual space with the bounded approx-
imation property (this should be compared to [16], where an analogous result for the 2-fold projective tensor norm π is
shown):

Corollary 2.11. Let β be a projective s-tensor norm with the sRN property and E a dual Banach space with the bounded approximation
property. Then,

⊗̃n,s
β E has the Radon–Nikodým property if and only if E does.

Proof. Let F be a predual of E and suppose E has the Radon–Nikodým property. Since F is Asplund, by Theorem 2.9 so is⊗̃n,s
β ′ F . On the other hand, by Theorem 2.2 we have a metric surjection

⊗̃n,s
β E

1� (
⊗̃n,s

β ′ F )′ . Since E = F ′ has the bounded

approximation property, by [18, Corollary 5.2], the mapping is injective. Thus,
⊗̃n,s

β E
1= (

⊗̃n,s
β ′ F )′ . Therefore,

⊗̃n,s
β E is the

dual of an Asplund Banach space and has the Radon–Nikodým property.
Since E is complemented in

⊗̃n,s
β E , the converse follows. �

Any Banach space E with a boundedly complete Schauder basis {ek}k is a dual space with the Radon–Nikodým property
and the bounded approximation property. Indeed, E turns out to be the dual of the subspace F of E ′ spanned by the dual
basic sequence {e′

k}k (which is, by the way, a shrinking basis of F ). Then we have⊗̃
n,s
β E

1=
(⊗̃

n,s
β ′ F

)′
. (6)

The monomials associated to {ek}k and to {e′
k}k with the appropriate ordering (see [22]) are Schauder basis of, respectively,⊗̃n,s

β E and
⊗̃n,s

β ′ F . By the equality (6), monomials form a boundedly complete Schauder basis of
⊗̃n,s

β E and a shrinking

Schauder basis of
⊗̃n,s

β ′ F .
On the other hand, if we start with a Banach space E with a shrinking Schauder basis and take F as its dual, we are in

the analogous situation with the roles of E and F interchanged. So we have:

Corollary 2.12. Let β be a projective s-tensor norm with the sRN property.

(a) If E has a boundedly complete Schauder basis, then so does
⊗̃n,s

β E.

(b) If E has a shrinking Schauder basis, then so does
⊗̃n,s

β ′ E.

The corresponding statement for the 2-fold full tensor norm π was shown by Holub in [23].

3. The sRN property for full tensor norms

In order to prove Theorem 2.2 we must first show an analogous result for full tensor products (see Theorem 3.5 below).
So let us first introduce the sRN property for full tensor products in the obvious way:
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Definition 3.1. A finitely generated full tensor norm of order n α has the symmetric Radon–Nikodým property (sRN property)
if (⊗̃

n
i=1�1,α

)
=

(⊗̃n

i=1
c0,α

′)′
.

As in [15, Lemma 33.3] we have the following symmetric result for ideals of multilinear form.

Proposition 3.2. Let α be a finitely generated full tensor norm of order n with the sRN property. Then,(⊗̃
n
i=1�1( J i),α

)
=

(⊗̃
n
i=1c0( J i),α

′)′

holds isometrically for all index sets J1, . . . , Jn.

Proof. Fix J1, . . . , Jn index sets, and let us define U(c0( J1), . . . , c0( Jn)) = (
⊗̃n

i=1c0( J i),α
′)′ . We must show U(c0( J1), . . . ,

c0( Jn)) = Umin(c0( J1), . . . , c0( Jn)) with equal norms. For T ∈ U(c0( J1), . . . , c0( Jn)), let us see that the set L = {( j1, . . . , jn):
T (e j1 , . . . , e jn ) �= 0} is countable. If not, there exist ( jk

1, . . . , jk
n)k∈N different indexes such that∣∣T (e jk

1
, . . . , e jk

n
)
∣∣ > ε.

Without loss of generality we can assume that the sequence of first coordinates jk
1 has all its elements pairwise differ-

ent. Passing to subsequences we can also assume that e jk
i

are weakly convergent, moreover, e jk
1

w→0. This contradicts the

Littlewood–Bogdanowicz–Pełczyński property of c0 [3,25].
Let Ωk : J1 × · · · × Jn → Jk given by Ωk( j1, . . . , jn) = jk . And let Lk be the set Ωk(L) ⊂ Jk . Consider, ξk the mapping

c0( Jk) → c0(Lk) given by

(a j) j∈ Jk �→ (a j) j∈Lk .

And the inclusion ık : c0(Lk) → c0( Jk) defined by

(a j) j∈Lk �→ (b j) j∈ Jk ,

where b j is a j if j ∈ Lk and zero otherwise. Then, we can factor

c0( J1) × · · · × c0( J1)
T

ξ1×···×ξn

K

c0(L1) × · · · × c0(Ln)

T

where T := T ◦ (ı1 × · · · × ın). Since α has the sRN property we know that U(c0(L1), . . . , c0(Ln)) = Umin(c0(L1), . . . , c0(Ln))

with equal norms. Therefore T is in Umin(c0(L1), . . . , c0(Ln)) with

‖T ‖U min = ‖T ‖U � ‖T ‖U .

Thus T belongs to Umin(c0(L1), . . . , c0(Ln)) which implies that T also is Umin(c0( J1), . . . , c0( Jn)). Moreover,

‖T ‖U min � ‖T ‖U min‖ξ1 × · · · × ξn‖ � ‖T ‖U . �
Let E1, . . . , En be Banach spaces. For every k = 1, . . . ,n, denote by Ik : Ek → �∞(B E ′

k
) the inclusion mapping. Also, let

EXTk denote the canonical extension of a multilinear form to the bidual in the k-th coordinate (i.e. the multilinear version
of the canonical extension ϕ∧ and ∧ϕ of a bilinear form ϕ , as in [15, 1.9]). We can describe this extension by the following
way:

EXTk(T )(x1, . . . , Zk, . . . , xn) = lim
xk,α

w∗→ zk

T (x1, . . . , xk,α, . . . , xn),

for all x j ∈ E j , zk ∈ E ′′
k , where xk,α

w∗→ zk stands for any bounded net on Ek weak-star convergent to zk . It is important to
mention that a multilinear version of the Extension Lemma [15, 13.2] holds, with the same proof. In other words, extending
a multilinear form to the bidual of any of the Banach spaces where it is defined preserves the norm as a linear functional
on the tensor product, for any finitely generated tensor norm.

For ϕ : E1 × · · · × En → K we denote by ϕn the associated (n − 1)-linear mapping ϕn : E1 × · · · × En−1 → E ′
n . Now, if

T : E ′
n → F ′ is a linear operator, then the (n − 1)-linear mapping ρ : E1 × · · · × En−1 × F ′ → K given by T ◦ ϕn induces an

n-linear form on E1 × · · · × En−1 × F . It is not hard to check that
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ρ(e1, . . . , en−1, f ) = (EXTn)ϕ
(
e1, . . . , en−1, T ′ J F ( f )

)
,

where J F : F → F ′′ is the canonical inclusion mapping.
For every k = 1, . . . ,n we define an operator

Ψk :
((⊗̃

k−1
j=1 E j

)
⊗̃ c0(B E ′

k
) ⊗̃

(⊗̃
n
j=k+1 E j

)
, /α′\

)′ →
(⊗̃n

i=1
Ei, /α

′\
)′

,

by the composition ((
⊗̃k−1

j=1IdEk ) ⊗̃ Ik ⊗̃ (
⊗̃n

j=k+1IdEk ))
′ ◦ EXTk .

The following remark is easy to check:

Remark 3.3. Let E1, . . . , En be Banach spaces. For every k the following diagram conmutes:

((
⊗̃k−1

j=1 E ′
j) ⊗̃ �1(B E ′

k
) ⊗̃ (

⊗̃n
j=k+1 E ′

j),\α/)

(
⊗̃k−1

j=1IdE′
j
)⊗̃Q k⊗̃(

⊗̃n
j=k+1IdE′

j
)

((
⊗̃k−1

j=1 E j) ⊗̃ c0(B E ′
k
) ⊗̃ (

⊗̃n
j=k+1 E j), /α

′\)′

Ψk

((
⊗̃k−1

j=1 E ′
j) ⊗̃ E ′

k ⊗̃ (
⊗̃n

j=k+1 E ′
j),\α/) (

⊗̃n
i=1 Ei, /α

′\)′,

where Q k : �1(B E ′
k
)

1
� E ′

k is the canonical quotient mapping.

Now an important proposition:

Proposition 3.4. Let E1, . . . , En be Banach spaces. If Ek is Asplund then Ψk is a metric surjection.

Proof. We will prove it assuming that k = n (the other cases are analogous). Notice that Ψn has norm less or equal to one
(since EXTn is an isometry).

Fix ϕ ∈ (
⊗̃n

i=1 Ei, /α
′\)′ and ε > 0 and let ϕ̃ ∈ ((

⊗̃n−1
i=1 Ei) ⊗̃ �∞(B E ′

n
), /α′\)′ a Hahn–Banach extension of ϕ . Since E ′

n has
the Radon–Nikodým property, by the Lewis–Stegall theorem the adjoint of the canonical inclusion In : En → �∞(B E ′

n
) factors

through �1(B E ′
n
) via

�∞(B E ′
n
)′ I ′n

A

E ′
n

�1(B E ′
n
)

Q n (7)

where Q n is the canonical quotient mapping and ‖A‖ � (1 + ε). Let ρ : E1 × · · ·× En−1 × c0(B E ′
n
) → K given by the formula

ρ(x1, . . . , xn−1,a) = (EXTn)ϕ̃(x1, . . . , xn−1, A′ Jc0(B E′
n
)(a)) (ρ is the n-linear form on E1 × · · · × En−1 × c0(B E ′

n
) associated to

A ◦ (ϕ̃)n). Using the ideal property and the fact that the extension to the bidual is an isometry ρ ∈ ((
⊗̃n−1

i=1 Ei) ⊗̃
c0(B E ′

n
), /α′\)′ and ‖ρ‖ � ‖ϕ‖(1 + ε).

If we show that Ψn(ρ) = ϕ we are done. It is an easy exercise to prove that I ′n(ϕ̃)n = ϕn . It is also easy to see that
In(x)(a) = Q n(a)(x) for x ∈ En and a ∈ �1(B E ′

n
).

Now, Ψn(ρ) = (
⊗̃n−1

i=1 IdEi ⊗̃ In)′ ◦ (EXTn)(ρ). Then,

Ψn(ρ)(x1, . . . , xn) = (Inxn)
[
ρ(x1, . . . , xn−1, ·)

]
= (Inxn)A(ϕ̃)n(x1, . . . , xn−1)

= Q n A(ϕ̃)n(x1, . . . , xn−1)(xn)

= I ′n(ϕ̃)n(x1, . . . , xn−1)(xn)

= ϕn(x1, . . . , xn−1)(xn)

= ϕ(x1, . . . , xn). �
The following result is the version of Theorem 2.2 for full tensor products. It should be noted that it holds for tensor

products of different spaces.

Theorem 3.5. Let α be a tensor norm with the sRN property and E1, . . . , En be Asplund spaces. Then(⊗̃
n
i=1 E ′

i,\α/
) 1

�
(⊗̃

n
i=1 Ei, /α

′\
)′

.
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In particular if (A,A) is the maximal ideal (of multilinear forms) associated with α, then(\A/
)min

(E1, . . . , En) = \A/(E1, . . . , En).

Proof. Using Remark 3.3 we know that the following diagram commutes in each square.

(
⊗̃n

i=1�1(B E ′
i
),\α/)

R0

⊗̃n−1
i=1 Id�1(B E′

i
)⊗̃Pn

(
⊗̃n

i=1c0(B E ′
i
), /α′\)′

EXTn

((
⊗̃n−1

i=1 c0(B E ′
i
)) ⊗̃ �∞(B E ′

n
), /α′\)′

((
⊗̃n−1

i=1 Idc0(B E′
i
))⊗̃In)′

((
⊗̃n−1

i=1 �1(B E ′
i
)) ⊗̃ E ′

n,\α/)
R1

(
⊗̃n−2

i=1 Id�1(B E′
i
))⊗̃Pn−1⊗̃IdE′

n

((
⊗̃n−1

i=1 c0(B E ′
i
)) ⊗̃ En, /α

′\)′

EXTn−1

((
⊗̃n−2

i=1 c0(B E ′
i
)) ⊗̃ �∞(B E ′

n−1
) ⊗̃ En, /α

′\)′

((
⊗̃n−1

i=1 Idc0(B E′
i
))⊗̃In−1⊗̃IdE′

n
)′

((
⊗̃n−2

i=1 �1(B E ′
i
)) ⊗̃ E ′

n−1 ⊗̃ E ′
n,\α/)

R2 ((
⊗̃n−2

i=1 c0(B E ′
i
)) ⊗̃ En−1 ⊗̃ En, /α

′\)′

. . .

. . . . . . . . .

. . .

(�1(B E ′
1
) ⊗̃ (

⊗̃n
i=2 E ′

i),\α/)
Rn−1

P1⊗̃(
⊗̃n

i=2IdE′
i
)

(c0(B E ′
1
) ⊗̃ (

⊗̃n
i=2 Ei), /α

′\)′

EXT1

(�∞(B E ′
1
) ⊗̃ (

⊗̃n
i=2 Ei), /α

′\)′

(I1⊗̃(
⊗̃n

i=2IdE′
i
))′

(
⊗̃n

i=1 E ′
i,\α/)

Rn
(
⊗̃n

i=1 Ei, /α
′\)′

Let us take a look at the first commutative square. Since α has the sRN property, R0 is a metric surjection by
Proposition 3.2. Moreover, by Proposition 3.4 the mapping ((

⊗̃n−1
i=1 Idc0(B E′

i
)) ⊗̃ In)′ ◦ EXTn is also a metric surjection. As a

consequence of these two facts we get that R1 is a metric surjection. The same argument can be applied to the second
commutative square, now that we know that R1 is metric surjection. Thus, R2 is also a metric surjection. Reasoning like
this, it follows that Rn : (⊗̃n

i=1 E ′
i,\α/) → (

⊗̃n
i=1 Ei, /α

′\)′ is a metric surjection. �
We will call Ψ : (

⊗̃n
i=1c0(B ′

Ei
))′ → (

⊗̃n
i=1 E ′

i)
′ the composition of the downward mappings in the right side of the last

diagram. The following proposition shows how to describe the mapping Ψ more easily (it will be useful to prove the
polynomial version of the last theorem).

Proposition 3.6. The mapping Ψ : (⊗̃n
i=1c0(B ′

Ei
), /α′\)′ → (

⊗̃n
i=1 Ei, /α

′\)′ is the composition mapping(⊗̃
n
i=1c0

(
B ′

Ei

)
, /α′\

)′ EXT−→
(⊗̃n

i=1
�∞

(
B ′

Ei

)
, /α′\

)′ (
⊗̃n

i=1 Ii)
′

−−−−−→
(⊗̃

n
i=1 Ei, /α

′\
)′

,

where EXT stands for the iterated extension to the bidual given by (EXTn) ◦ · · · ◦ (EXT1) (we extend from the left to the right).
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Proof. For the readers’ sake we will give a proof for the case n = 2. Let ρ ∈ (c0(B E ′
1
) ⊗̃ c0(B E ′

2
), /α′\)′ , then

Ψ (ρ)(e1, e2) = (idE1 ⊗̃ I2)
′(EXT2)(I1 ⊗̃ Idc0(B E′

2
))

′(EXT1)(ρ)(e1, e2)

= (EXT2)(I1 ⊗̃ Idc0(B E′
2
))

′(EXT1)(ρ)
(
e1, I2(e2)

)
= I2(e2)

(
(I1 ⊗̃ Idc0(B E′

2
))

′(EXT1)(ρ)(e1, ·)
)

= I2(e2)
(
a �→ I1(e1)ρ(·,a)

)
= I2(e2)

(
(EXT1)(ρ)

(
I1(e1), ·

))
= (EXT)(ρ)

(
I1(e1), I2(e2)

)
= (I1 ⊗̃ I2)

′(EXT)(ρ)(e1, e2). �
Now, this proposition shows that the diagram

(
⊗̃n

i=1�1(B E ′
i
),\α/)

P

(
⊗̃n

i=1c0(B E ′
i
), /α′\)′

Ψ

(
⊗̃n

i=1 E ′
i,\α/) (

⊗̃n
i=1 Ei, /α

′\)′

conmutes and, by the proof of Theorem 3.5, for E1, . . . , En Asplund spaces, the mapping Ψ is a metric surjection.
The next remark will be very useful. It can be proved following carefully the proof of Proposition 3.4 and using Proposi-

tion 3.6.

Remark 3.7. Let E be an Asplund space and A : �∞(B E ′ )′ → �1(B E ′ ) be the operator obtained by the Lewis–Stegall
theorem with ‖A‖ � 1 + ε as in diagram (7). Given ϕ ∈ (

⊗̃n
i=1 E, /α′\)′ , if we take a Hahn–Banach extension ϕ̃ ∈

(
⊗̃n

i=1�∞(B E ′ ), /α′\)′ , then the linear functional ρ ∈ (
⊗̃n

i=1c0(B E ′ ), /α′\)′ given by

ρ(a1, . . . ,an) := (EXT)(ϕ̃)
(

A′ J (a1), . . . , A′ J (an)
)
, (8)

satisfies Ψ (ρ) = ϕ and ‖ρ‖ � ‖ϕ‖(1 + ε)n .

We end this section with the statement of the non-symmetric versions of Theorem 2.9, Corollary 2.11 and Corollary 2.12,
which readily follow:

Theorem 3.8. Let E1, . . . , En be Banach spaces and α a full tensor norm with sRN. The tensor product (E1 ⊗̃ · · · ⊗̃ En, /α′\) is Asplund
if and only if Ei is Asplund for i = 1, . . . ,n.

Corollary 3.9. Let α be a projective full tensor norm with the sRN property and E1, . . . , En dual Banach spaces with the bounded
approximation property. Then, (E1 ⊗̃ · · · ⊗̃ En,α) has the Radon–Nikodým property if and only if each Ei does.

Corollary 3.10. Let α be a projective full tensor norm with the sRN property and E1, . . . , En be Banach spaces.

(a) If each Ei has a boundedly complete Schauder basis, then so does (E1 ⊗̃ · · · ⊗̃ En,α).
(b) If each Ei has a shrinking Schauder basis, then so does (E1 ⊗̃ · · · ⊗̃ En,α′).

4. The proof of Theorem 2.2 and some questions

To prove Theorem 3.5 we used a multilinear version of the Extension Lemma whose proof follows identical to the one in
[15, 6.7]. For polynomials a similar result is needed:

Proposition 4.1. (See [11, Corollary 3.4].) Let β a finitely generated s-tensor norm. For each P ∈ (
⊗̃n,s

β E)′ its Aron–Berner extension

AB(P ) of P belongs to (
⊗̃n,s

β E ′′)′ and

‖P‖
(
⊗̃n,s

β E)′ = ∥∥AB(P )
∥∥

(
⊗̃n,s

β E ′′)′ .
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This was obtained as a consequence of the isometry of the iterated extension to ultrapowers for maximal polynomial
ideals. However, this can also be proved without the ultrapower techniques: just use the principle of local reflexivity instead
of local determination of ultrapowers and proceed as in [11].

Proof of Theorem 2.2. As in the multilinear case, the next diagram commutes:⊗̃n,s
\β/�1(B E ′)

⊗̃n,s P

(
⊗̃n,s

/β ′\c0(B E ′))′

Ψ⊗̃n,s
\β/E ′ (

⊗̃n,s
/β ′\E)′

where Ψ is the composition mapping(⊗̃
n,s
/β ′\c0(B E ′)

)′ AB−→
(⊗̃

n,s
/β ′\�∞(B E ′)

)′ (
⊗̃n,s

I)′−−−−−→
(⊗̃

n,s
/β ′\E

)′
.

Fix P ∈ (
⊗̃n,s

/β ′\E)′ . Denote by P ∈ (
⊗̃n,s

/β ′\�∞(B E ′ ))′ a Hahn–Banach extension of P and by A an operator obtained from
the Lewis–Stegall theorem such that ‖A‖ � 1+ε (see diagram (7)). Since the Aron–Berner is an isometry for maximal ideals
(Proposition 4.1), as in Remark 3.7, the linear functional L ∈ (

⊗̃n,s
/β ′\c0(B E ′ ))′ given by L(a) := (AB)(P )(A′ Jc0(B E′ )a) satisfies

that Ψ (L) = P and ‖L‖
(
⊗̃n,s

/β′\c0(B E′ ))′ � ‖P‖
(
⊗̃n,s

/β′\ E)′ (1 +ε)n. Thus, Ψ is a metric surjection and, by the diagram, we easily get

that
⊗̃n,s

\β/E ′ → (
⊗̃n,s

/β ′\E)′ is also a metric surjection. �
We conclude the article with a couple of questions:
Since we do not know of any example of an s-tensor without the sRN property, we ask: Does every s-tensor norm have the

sRN property?
A more precise, but not necessarily easier, question is the following: does /πs\ have the sRN property? In the case of a

positive answer we would conclude that every natural s-tensor norm (see [12]) have this property.
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