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We provide coincidence results for vector-valued ideals of multilinear operators. 
More precisely, if A is an ideal of n-linear mappings we give conditions for which 
the equality A(E1, . . . , En; F ) = Amin(E1, . . . , En; F ) holds isometrically. As an 
application, we obtain in many cases that the monomials form a Schauder basis 
of the space A(E1, . . . , En; F ). Several structural and geometric properties are also 
derived using this equality. We apply our results to the particular case where A
is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar 
statements are given for ideals of vector-valued homogeneous polynomials.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

A natural question in the theory of multilinear operators, and also of homogeneous polynomials, is to find 
conditions under which an ideal A coincides isometrically with its minimal kernel Amin (see [2,3,9,14,17,36]
and [22, Section 33], which deal with problems of this nature). The reason for this is that, in many cases, 
this allows a tensorial representation of the ideal. Frequently, the tensor product inherits many structural 
characteristics from those properties of the spaces involved. For example, a known result due to Gelbaum 
and Gil de Lamadrid [31,32] states that the tensor E1 ⊗̃α E2 has a Schauder basis if both spaces E1 and E2

have a basis. This can be extended recursively to tensor products of any number of spaces, since the tensor 
product is associative (see the comments before Theorem 2.10 below).

Other properties (such as separability, Asplund or the Radon–Nikodým properties), in many cases are also 
preserved by the tensor product (see for example [10–12,17,40] and also the references therein). A tensorial 
representation of the ideal and these kinds of transference results, permit to deduce many attributes of the 

* Corresponding author.
E-mail addresses: dgalicer@dm.uba.ar (D. Galicer), rvillafa@dm.uba.ar (R. Villafañe).

1 The authors were partially supported by CONICET PIP 0624, ANPCyT PICT 2011-1456 and UBACyT 20020100100746. The 
second author has a doctoral fellowship from CONICET.
http://dx.doi.org/10.1016/j.jmaa.2014.07.023
0022-247X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2014.07.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:dgalicer@dm.uba.ar
mailto:rvillafa@dm.uba.ar
http://dx.doi.org/10.1016/j.jmaa.2014.07.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2014.07.023&domain=pdf


1744 D. Galicer, R. Villafañe / J. Math. Anal. Appl. 421 (2015) 1743–1766
space A(E1, . . . , En; F ). Moreover, as the elements of Amin may be usually approximated by finite type 
operators, we obtain the same property for A.

Therefore, we are interested in knowing when the canonical mapping

� :
(
E′

1 ⊗̃ . . . ⊗̃E′
n ⊗̃ F ;α

) 1
Amin(E1, . . . , En;F ) A(E1, . . . , En;F )

is a quotient mapping or an isometric isomorphism (here α stands for the tensor norm associated to A). 
Obviously, in both cases, we get Amin equal to A.

Lewis ([36] and [22, 33.3]) obtained many results of the form Amin(E; F ′) = A(E; F ′) if A is a maximal 
operator ideal or, in other words, coincidences of the form E′ ⊗̃α F ′ = (E ⊗̃α′ F )′. Based on Lewis’ work, 
the first author and Carando tackled in [17] an analogous problem for scalar ideals of multilinear operators 
and polynomials (i.e., where the target space is the scalar field). As in Lewis’ theorem, the Radon–Nikodým 
property becomes a key ingredient. In this article we follow the lines of [17] to address the vector-valued 
case. We stress that the vector-valued problem adds some technical difficulties.

For a given ideal of multilinear operators, we introduce in Definition 2.1 a vector-valued Radon–Nikodým 
property in the sense of [36,17] (where a similar property is given for tensor norms). This definition is related 
to a coincidence result in c0-spaces. For extendible ideals (ideals in which every multilinear operator can 
be extended to any superspace of the domain, see Section 1) which enjoy the latter property we prove, in 
the main theorem, Theorem 2.4, that Amin(E1, . . . , En; F ) coincides isometrically with A(E1, . . . , En; F )
for Asplund spaces E1, . . . , En. It is noteworthy that the main theorem is not only based on what was 
done by Lewis and Carando–Galicer, but also generalizes both results. Finally we relate in Theorem 2.10, 
Proposition 2.11 and Theorem 2.12, intrinsic attributes of A(E1, . . . , En; F ) with properties of E1, . . . , En, F
and their tensor product. Namely, the existence of Schauder bases, separability, the Radon–Nikodým and 
Asplund properties.

We give some applications of these results for the ideals of extendible multilinear operators E and Pietsch-
integral multilinear operators PI. In Corollary 3.2, we obtain that if E1, . . . , En are Asplund spaces and F ′

contains no copy of c0 then the canonical mapping between Emin(E1, . . . , En; F ′) and E(E1, . . . , En; F ′) is 
an isometric isomorphism. Moreover, if E′

1, . . . , E
′
n, F

′ also have a basis, then the monomials with the square 
ordering form a Schauder basis of E(E1, . . . , En; F ′). With additional hypothesis we obtain, in Corollary 3.3, 
similar statements in the case where the target space is not necessarily a dual space. In Corollary 3.5 we 
prove that E(E1, . . . , En; F ′) has the Radon–Nikodým property if and only if E1, . . . , En, F are Asplund 
spaces.

A classical result due to Alencar [2] shows that the space of Pietsch-integral multilinear operators PI
coincides isometrically, on Asplund spaces, with its minimal kernel (the space of nuclear operators, N ). We 
deduce this statement as a particular case of our main results. It is worth mentioning that we do not use the 
vector measure theory machinery [23] as Alencar did. Our perspective is completely different, it strongly 
relies on tensor techniques and the fact that PI enjoys the vector-valued Radon–Nikodým property. We 
obtain in Corollary 3.8 a coincidence result for the ideal GI of Grothendieck-integral multilinear operators 
as well.

We also state coincidence results for vector-valued ideals of homogeneous polynomials. In particular, we 
obtain in Section 4 similar theorems for Pe and PPI (i.e., the ideals of extendible and Pietsch-integral 
homogeneous polynomials, respectively). For the latter ideal, we recover some known results given in [9,14].

The article is organized as follows. In Section 1 we state all the necessary background on ideals of 
multilinear operators and their associated tensor norms. We also fix some standard notation and recall basic 
definitions of the theory of Banach spaces. In Section 2 we prove our vector-valued Lewis type theorems 
(coincidence results) and some of their consequences. In Section 3 we give the mentioned applications for 
the ideals E and PI. Finally, in the last section we extend our results to the polynomial context.
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1. Preliminaries

We set some notation: E, F , G are real or complex Banach spaces, E′ is the dual space of E and 
JE : E → E′′ is the canonical embedding of E into its bidual. We denote by BE the closed unit ball of E
and by FIN (E) the class of all finite dimensional subspaces of E.

A surjective linear operator S : E → F is called a metric surjection or a quotient if ‖S(x)‖F = inf{‖y‖E :
S(y) = S(x)}, for all x ∈ E. As usual, a mapping I : E → F is called an isometry if ‖Ix‖F = ‖x‖E for all 
x ∈ E. We use the notations

1� and 
1
↪→ to indicate a metric surjection or an isometry, respectively. We also 

write E
1= F whenever E and F are isometrically isomorphic spaces (i.e., there exists I : E → F a surjective 

isometry).
For Banach spaces E1, . . . , En, we denote by 

⊗n
j=1 Ej the n-fold tensor product and by 

∑r
j=1 λj · xj

1 ⊗
. . .⊗ xj

n one of its elements. When the Banach spaces are vector spaces over C, the scalars are not needed 
in the previous expression. For simplicity, we use the complex notation, although our results hold for real 
and complex spaces.

There is no general reference for tensor norms of order n on tensor products of Banach spaces, though 
one can find the definition and some properties in [29]. All abstract theory on such tensor norms that we 
are going to use comes as a natural generalization of the bilinear case for which we refer to [22]. We include 
some basic definitions.

We say that α is a tensor norm of order n if α assigns to the normed spaces E1, . . . , En a norm 
α( . ; 

⊗n
j=1 Ej) on the n-fold tensor product 

⊗n
j=1 Ej such that

(1) ε ≤ α ≤ π on 
⊗n

j=1 Ej , where ε and π are the classical injective and projective tensor norms.
(2) ‖T1 ⊗ . . .⊗Tn : (

⊗n
j=1 Ej ; α) → (

⊗n
j=1 Fj ; α)‖ ≤ ‖T1‖ · · · ‖Tn‖ for any operators Ti ∈ L(Ei, Fi) (metric 

mapping property).

We denote by (
⊗n

j=1 Ej ; α) the tensor product 
⊗n

j=1 Ej endowed with the norm α( . ; 
⊗n

j=1 Ej), and we 

write (
⊗̃n

j=1Ej ; α) for its completion.
A tensor norm α is finitely generated if for every normed spaces E1, . . . , En and z ∈

⊗n
j=1 Ej we have 

α(z; 
⊗n

j=1 Ej) = inf{α(z; 
⊗n

j=1 Mj) : Mj ∈ FIN (Ej), z ∈ M1⊗ . . .⊗Mn}. For example, π and ε are finitely 
generated tensor norms.

If α is a tensor norm of order n, then the dual tensor norm α′ is defined on FIN (the class of finite 

dimensional spaces) by (
⊗n

j=1 Mj ; α′) : 1= (
⊗n

j=1 M
′
j ; α)′ and on NORM (the class of normed spaces) by 

α′(z; 
⊗n

j=1 Ej) := inf{α′(z; 
⊗n

j=1 Mj) : z ∈ M1 ⊗ . . . ⊗ Mn}, the infimum being taken over all of finite 
dimensional subspaces Mj of Ej whose tensor product contains z (see [22, Section 15]). By definition, α′ is 
always finitely generated. It is well known that π′ = ε and ε′ = π.

We now recall several definitions of the theory of multilinear ideals. Continuous multilinear operators are 
exactly those bounded on the unit ball. The space of all continuous n-linear operators from E1 × . . .× En

to F is denoted by L(E1, . . . , En; F ). This class is a Banach space endowed with the norm

‖T‖L(E1,...,En;F ) = sup
xi∈BEi

∥∥T (x1, . . . , xn)
∥∥
F
.

An ideal of continuous vector-valued n-linear operators is a pair (A, ‖ · ‖A) such that:

(i) A(E1, . . . , En; F ) := A ∩L(E1, . . . , En; F ) is a linear subspace of L(E1, . . . , En; F ) and ‖ · ‖A is a norm 
which makes the pair (A(E1, . . . , En; F ), ‖ · ‖A) a Banach space.



1746 D. Galicer, R. Villafañe / J. Math. Anal. Appl. 421 (2015) 1743–1766
(ii) If Rj ∈ L(Xj ; Ej) for 1 ≤ j ≤ n, T ∈ A(E1, . . . , En; F ) and S ∈ L(F ; Y ) then S ◦ T ◦ (R1, . . . , Rn) ∈
A(X1, . . . , Xn; Y ) and ∥∥S ◦ T ◦ (R1, . . . , Rn)

∥∥
A
≤ ‖S‖ · ‖T‖A · ‖R1‖ · · · ‖Rn‖.

(iii) The mapping (λ1, . . . , λn) 	→ λ1 · · ·λn belongs to A(nK; K) and has norm 1.

Note that trivially L is an ideal of multilinear operators. We also give the definitions of some classical 
multilinear operators ideals (endowed with the same norm as L) and set some usual notation.

We denote by Lf the ideal of finite type multilinear operators. An n-linear operator T ∈ Lf (E1, . . . , En; F )
if there exist (xj

k)′ ∈ E′
k and fj ∈ F such that for every xk in Ek (1 ≤ k ≤ n),

T (x1, . . . , xn) =
r∑

j=1

(
xj

1
)′(x1) · · ·

(
xj
n

)′(xn) · fj .

The closure of the class of finite type multilinear operators in L(E1, . . . , En; F ) is the ideal of approximable 
multilinear operators and is denoted by Lapp(E1, . . . , En; F ). Finally, Lwsc stands for the ideal of weakly 
sequentially continuous multilinear operators. Recall that T ∈ Lwsc(E1, . . . , En; F ) if for every weakly con-
vergent sequences xj

k
w→ xk in Ek (1 ≤ k ≤ n), we have T (xj

1, . . . , x
j
n) → T (x1, . . . , xn) in F .

Other well known ideals of multilinear operators that we are going to deal with are the nuclear, Pietsch 
integral, Grothendieck integral and extendible (N , PI, GI and E respectively). We skip all these definitions 
now and leave them to Section 3.

The minimal kernel of A is defined as the composition ideal Amin := F ◦ A ◦ (F, . . . ,F), where F
stands for the ideal of approximable operators. In other words, a multilinear operator T1 belongs to 
Amin(E1, . . . , En; F ) if it admits a factorization

E1 × . . .× En

T1

(R1,...,Rn)

F

X1 × . . .×Xn

T2
Y

S (1)

where S, R1, . . . , Rn ∈ F and T2 ∈ A(X1, . . . , Xn; Y ). The A-minimal norm of T1 is given by ‖T1‖Amin :=
inf{‖S‖ · ‖T2‖A · ‖R1‖ · · · ‖Rn‖}, where the infimum runs over all possible factorizations as in (1).

It is important to mention a useful property of Amin: if E′
1, . . . , E

′
n and F have the metric approximation 

property, then Amin(E1, . . . , En; F ) 1
↪→ A(E1, . . . , En; F ) and also Amin(E1, . . . , En; F ) coincides isomet-

rically with Lf (E1, . . . , En;F )‖·‖A . This and other properties of Amin can be found in [28]. An ideal of 
multilinear operators is said to be minimal if Amin 1= A. For example, the ideals of nuclear and approx-
imable multilinear operators are minimal. Moreover, (GI)min = (PI)min = N and (L)min = Lapp (see [38]
for the polynomial version of these equalities).

If A is a vector-valued ideal of multilinear operators, its associated tensor norm is the unique finitely 
generated tensor norm α, of order n + 1, satisfying

A(M1, . . . ,Mn;N) 1=
(
M ′

1 ⊗ . . .⊗M ′
n ⊗N ;α

)
for every finite dimensional spaces M1, . . . , Mn, N . In that case we write A ∼ α. For example, L ∼ ε, 
Lapp ∼ ε, N ∼ π, PI ∼ π and GI ∼ π. Notice that A and Amin have the same associated tensor norm 
since they coincide isometrically on finite dimensional spaces.
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Let A ∼ α, the following theorem due to Floret [28, Theorem 4.2] exhibits a close relation between 
(E′

1 ⊗ . . .⊗E′
n ⊗ F ; α) and Amin(E1, . . . , En; F ).

Theorem 1.1 (Representation theorem for minimal ideals). Let E1, . . . , En, F be Banach spaces and let A be 
a minimal ideal with associated tensor norm α. There is a natural quotient mapping

(
E′

1 ⊗̃ . . . ⊗̃E′
n ⊗̃ F ;α

) 1� A(E1, . . . , En;F )

defined on E′
1 ⊗ . . .⊗E′

n ⊗ F by the obvious rule

r∑
j=1

(
xj

1
)′ ⊗ . . .⊗

(
xj
n

)′ ⊗ fj 	→
r∑

j=1

(
xj

1
)′(·) . . . (xj

n

)′(·)fj .
Therefore, for any ideal A ∼ α (not necessarily minimal) we get (E′

1 ⊗̃ . . . ⊗̃ E′
n ⊗̃ F ; α) 

1� Amin(E1,

. . . , En; F ). It should be mentioned also that, if E′
1, . . . , E

′
n, F have the bounded approximation property, 

then (E′
1 ⊗̃ . . . ⊗̃ E′

n ⊗̃ F ; α) 1= Amin(E1, . . . , En; F ), as can be seen in [28].
We mainly work with extendible ideals of multilinear operators. Recall that an ideal A is extendible

if the following holds: for all Banach spaces E1, E2, . . . , En, F , superspaces G1 ⊃ E1, . . . , Gn ⊃ En and 
T ∈ A(E1, . . . , En; F ), there exists an extension T̃ ∈ A(G1, . . . , Gn; F ) of T with the same A-norm. Some 
examples of extendible ideals are PI and E (this property is studied in [13,21,35], but for the polynomial 
analogues of these ideals).

We end this section referring the reader to [1,22,23] for all the standard (but unexplained) definitions of 
Banach space theory that appear in this article.

2. Coincidence on ideals of multilinear operators

The representation theorem for minimal ideals 1.1 gives a natural norm one inclusion from (E′
1 ⊗̃ . . .

⊗̃E′
n⊗̃F ; α) to A(E1, . . . , En; F ) defined by

� : (E′
1 ⊗̃ . . . ⊗̃ E′

n ⊗̃ F ;α) 1
Amin(E1, . . . , En;F )

≤1
A(E1, . . . , En;F ).

An important observation is that, if � is a quotient mapping or an isometric isomorphism, we obtain that 
Amin = A.

To study when the mapping � is actually a quotient mapping a condition on the tensor norm is needed. 
A fundamental ingredient both in [36] and [17], where coincidence results are studied (in the operator frame 
and multilinear/polynomial context, respectively), is the Radon–Nikodým property for tensor norms. Based 
on the definitions therein, we give a vector-valued version of this notion not for tensor norms but for ideals 
of multilinear operators.

Definition 2.1. Let A ∼ α be an ideal of multilinear operators and F be a Banach space. We say that A has 
the F -Radon–Nikodým property (F -RNp) if

(
�1(J1) ⊗̃ . . . ⊗̃ �1(Jn) ⊗̃ F, α

) 1� A
(
c0(J1), . . . , c0(Jn);F

)
,

for all J1, . . . , Jn index sets.
If A has the F -RNp for all F , we say that A has the vector-RNp.



1748 D. Galicer, R. Villafañe / J. Math. Anal. Appl. 421 (2015) 1743–1766
The previous definition says that if A has the F -RNp then A(c0(J1), . . . , c0(Jn); F ) coincides with the 
ideal Amin(c0(J1), . . . , c0(Jn); F ) for all J1, . . . , Jn index sets.

In many cases, it is enough to check this property only for countable index sets (i.e., J1 = . . . = Jn = N), 
as we show in the following proposition.

Proposition 2.2. Let A ∼ α be an ideal such that

(�1 ⊗̃ . . . ⊗̃ �1 ⊗̃ F, α)
1� A(c0, . . . , c0;F ).

If F contains no copy of c0 or A ⊆ Lwsc, then A has the F -RNp.

Roughly speaking, if A(c0, . . . , c0; F ) coincides with Amin(c0, . . . , c0; F ), the previous statement allows 
us to conclude the existence of a quotient mapping over larger c0-spaces (i.e., A(c0(J1), . . . , c0(Jn); F ) =
Amin(c0(J1), . . . , c0(Jn); F ) for all J1, . . . , Jn index sets). We follow some ideas from [17, Proposition 3.2]. 
We need a couple of results first in order to give a proof.

A folklore result known as the Littlewood–Bogdanowicz–Pełczyński theorem (see [37,7,39] and also [25]) 
states that every scalar multilinear operator T : c0 × . . . × c0 → K is approximable. We present here a 
vector-valued version of this theorem. More precisely, we show that, if F contains no copy of c0, then 
L(nc0; F ) = Lapp(nc0; F ). We stress that this can be derived from [33]. However, it is not presented in this 
manner and follows from a more general result. Indeed, if F contains no copy of c0 then every operator 
S : c0 → F is weakly compact (see [1, Theorem 2.4.10]), therefore the result follows from [33, Theorem 6]
(since c0 has the Dunford–Pettis property). We give an independent proof based on elemental properties 
of c0.

Recall that a (formal) series 
∑

j∈N
xj in a Banach space E is weakly unconditionally Cauchy if for every 

ϕ ∈ E′, 
∑

j∈N
|ϕ(xj)| < ∞.

Proposition 2.3. L(nc0; F ) = Lapp(nc0; F ) if and only if F contains no copy of c0.

Proof. If F = c0 it is easy to see that there exists T ∈ L(nc0; c0) but not in Lapp(nc0; c0). In-
deed, take T (x1, . . . , xn) = (x1(1) · · ·xn−1(1) · xn(j))j∈N. If T is approximable, so is T (e1, . . . , e1, ·), but 
T (e1, . . . , e1, ·) = Idc0(·), which is a contradiction. The case where F contains copy of c0 easily follows from 
this.

Conversely, suppose F contains no copy of c0. We show first that every T ∈ L(nc0; F ) is weakly sequen-
tially continuous at the origin. Suppose there exists T ∈ L(nc0; F ) such that T is not weakly sequentially 
continuous at the origin. By using the norm continuity of T , the basis of c0 and by taking subsequences, if 
necessary, we can construct sequences (u1

j)j , . . . (un
j )j ⊂ c0 and a strictly increasing sequence of non-negative 

integers (kj)j such that ∥∥T (u1
j , . . . , u

n
j

)∥∥ ≥ δ, (2)

for some δ > 0, with

ui
j =

kj+1∑
l=1

xi
l,jel,

∥∥∥∥∥
kj∑
l=1

xi
l,jel

∥∥∥∥∥ ≤ 1
2j and

∥∥∥∥∥
kj+1∑

l=kj+1

xi
l,jel

∥∥∥∥∥ = 1,

for all 1 ≤ i ≤ n and j ∈ N. Take vij =
∑kj+1

l=kj+1 x
i
l,jel then, by the Bessaga–Pełczyński principle [1, 

Proposition 1.3.10], (vij)j is a block basis of a subspace of c0 equivalent to the canonical basis of c0 for each 
1 ≤ i ≤ n. Using [41, Proposition 2] we obtain that 

∑
|ϕ(T (v1

j , . . . , v
n
j ))| ≤ ‖ϕ ◦ T‖ < ∞ for all ϕ ∈ F ′, 
j∈N
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since ϕ ◦ T ∈ L(nc0). Thus, the formal series 
∑

j∈N
T (v1

j , . . . , v
n
j ) is weakly unconditionally Cauchy. Since 

F contains no copy of c0, this implies that the series 
∑

j∈N
T (v1

j , . . . , v
n
j ) is unconditionally convergent [1, 

Theorem 2.4.11], which yields that limj→∞ T (v1
j , . . . , v

n
j ) = 0.

Now,

∥∥T (u1
j , . . . , u

n
j

)∥∥ ≤
∥∥T (v1

j , . . . , v
n
j

)∥∥ + ‖T‖
(

n∑
r=1

(
n

r

)
1

2rj

)
.

Since both terms tend to zero as j tends to infinity, this contradicts (2). Therefore, we have proved that 
every n-linear operator in L(nc0; F ) is weakly sequentially continuous at the origin.

Using that every k-linear operator in L(kc0; F ) is weakly sequentially continuous at the origin for every 
1 ≤ k ≤ n, a standard argument shows that every n-linear operator in L(nc0; F ) is in fact weakly sequentially 
continuous.

To finish the proof it remains to see that every weakly sequentially continuous T : c0 × . . . × c0 → F is 
approximable (i.e., can be uniformly approximated by finite type multilinear operators). Since c0 contains 
no copy of �1, by a multilinear version of [4, Proposition 2.12], we know that every weakly sequentially 
continuous multilinear mapping T : c0 × . . .× c0 → F is weakly uniformly continuous on bounded sets (i.e., 
Lwsc(nc0, F ) = Lw(nc0, F )). It is important to remark that [4, Proposition 2.12] is a result on polynomials, 
but follows analogously in the multilinear frame. On the other hand, since c′0 = �1 has the approximation 
property, then Lw(nc0, F ) = Lapp(nc0, F ). This result can be found in [5, Proposition 2.7], but again in the 
context of polynomial mappings. �

From Proposition 2.3 it follows that if F contains no copy of c0, then every continuous homogeneous 
polynomial from c0 to F is approximable. This provides new examples of vector-valued π1-holomorphy 
types, a class of polynomials introduced in [26] and successfully explored in [6].

We are now able to prove Proposition 2.2.

Proof of Proposition 2.2. Let T ∈ A(c0(J1), . . . , c0(Jn); F ) and let L = {(j1, . . . , jn) : T (ej1 , . . . , ejn) �= 0}. 
Note that L is a countable set. If not, there exist (jk1 , . . . , jkn)k∈N different indexes such that |T (ejk1 , . . . , ejkn)| >
ε, for some ε > 0. Without loss of generality we can assume that the sequence of first coordinates jk1 has 
all its elements pairwise different. Passing to subsequences we can also assume that ejki is weakly null. If 
F contains no copy of c0 we can use the vector-valued Littlewood–Bogdanowicz–Pełczyński property of c0, 
Proposition 2.3, to obtain a contradiction. If A ⊆ Lwsc, the claim follows immediately.

Let Ωk : J1 × · · · × Jn → Jk be given by (j1, . . . , jn) 	→ jk, and set Lk := Ωk(L) ⊂ Jk. Consider the 
mapping ξk : c0(Jk) → c0(Lk) given by

(aj)j∈Jk
	→ (aj)j∈Lk

.

We also have the inclusion ık : c0(Lk) → c0(Jk) defined by

(aj)j∈Lk
	→ (bj)j∈Jk

,

where bj is aj if j ∈ Lk and zero otherwise. Note that, if we consider T := T ◦ (ı1, . . . , ın), then T ∈
A(c0(L1), . . . , c0(Ln); F ). Moreover, T ◦ (ξ1, . . . , ξn) = T and ‖T‖A = ‖T‖A. Finally, since the following 
diagram
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(�1(L1) ⊗̃ . . . ⊗̃ �1(Ln) ⊗̃ F, α) 1

ξ′1⊗...⊗ξ′n⊗IdF

A(c0(L1), . . . , c0(Ln);F ) S

(�1(J1) ⊗̃ . . . ⊗̃ �1(Jn) ⊗̃ F, α) A(c0(J1), . . . , c0(Jn);F ) S ◦ (ξ1, . . . , ξn)

is commutative, and the mapping (ξ′1 ⊗ . . .⊗ ξ′n ⊗ IdF ) is an isometry because �1(Lk) is a 1-complemented 
subspace of �1(Jk) (via ı′k), we get what we want. �

We have seen a result that permits us to know if a given ideal enjoys the vector-valued Radon–Nikodým 
property. To state our coincidence result for ideals of multilinear operators we first recall and give some 
definitions. A Banach space E is an Asplund space if every separable subspace of E has separable dual. In 
particular, reflexive spaces and spaces that have separable duals (e.g., c0) are Asplund. For more equivalences 
of the Asplund property and related topics see [23].

For 1 ≤ k ≤ n, we define a canonical mapping, called the k-Arens extension of T ,

Extk : L(E1, . . . , En;F ) → L
(
E1, . . . , Ek−1, E

′′
k , Ek+1, . . . , En;F ′′),

in the following way: given T ∈ L(E1, . . . , En; F ), consider 
←−−−−−−−−
(JF ◦ T ) the (n + 1)-linear form on E1 × . . . ×

En × F ′ given by 
←−−−−−−−−
(JF ◦ T )(x1, . . . , xn, y′) = (JF ◦ T )(x1, . . . , xn)(y′), now,

Extk(T )
(
x1, . . . , x

′′
k , . . . , xn

)(
y′
)

:= x′′
k

(
z 	→ ←−−−−−−−−

(JF ◦ T )
(
x1, . . . , xk−1, z, xk+1, . . . , xn, y

′)).
We say that A is an F -Arens stable ideal if the mapping

Extk : A(E1, . . . , En;F ) → A
(
E1, . . . , Ek−1, E

′′
k , Ek+1, . . . , En;F

)
is well defined and results an isometry for all 1 ≤ k ≤ n. Note that the condition above says that the range 
of every Arens extension remains on F . If A is F -Arens stable for every F , we just say that A is an Arens 
stable ideal. It is important to mention that maximal ideals of multilinear operators are F ′-Arens stable for 
every dual space F ′ (see for example [22, Extension Lemma 13.2]).

It is time to state our Lewis type theorem: a coincidence result for vector-valued multilinear operators.

Theorem 2.4. Let E1, . . . , En be Asplund spaces. If A ∼ α is an F -Arens stable extendible ideal with the 
F -RNp then,

(
E′

1 ⊗̃ . . . ⊗̃E′
n⊗̃F, α

) 1� A(E1, . . . , En;F ). (3)

In particular, Amin(E1, . . . , En; F ) 1= A(E1, . . . , En; F ).

We need some previous results in order to give a proof of this theorem. We follow the lines of [17] and 
include all the main steps for completeness. We define for a given Banach space E two natural mappings: 
IE : E → �∞(BE′) and QE : �1(BE) → E, the canonical inclusion and the canonical quotient mapping 
respectively.

Let A be an F -Arens stable ideal of multilinear operators. We consider for each 1 ≤ k ≤ n a natural 
operator Ψk : A(E1, . . . , Ek−1, c0(BE′

k
), Ek+1, . . . , En; F ) → A(E1, . . . , En; F ) given by

Ψk(T ) := Extk(T ) ◦ (IdE1 , . . . , IdEk−1 , IEk
, IdEk+1 , . . . , IdEn

).
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Remark 2.5. If A ∼ α is F -Arens stable, then we have the following commutative diagram

((
⊗̃k−1

j=1E
′
j) ⊗̃ �1(BE′

k
) ⊗̃ (

⊗̃n

j=k+1E
′
j) ⊗̃ F, α)

(
⊗k−1

j=1 IdE′
j
)⊗QE′

k
⊗(

⊗n
j=k+1 IdE′

j
)⊗IdF

A(E1 . . . , Ek−1, c0(BE′
k
), Ek+1, . . . , En;F )

Ψk

((
⊗̃k−1

j=1E
′
j) ⊗̃ E′

k ⊗̃ (
⊗̃n

j=k+1E
′
j) ⊗̃ F, α) A(E1 . . . , Ek−1, Ek, Ek+1, . . . , En;F ).

The following proposition is crucial for our purposes.

Proposition 2.6. Let E1, . . . , En, F be Banach spaces and A be an F -Arens stable extendible ideal. If Ek is 
Asplund then Ψk is a metric surjection.

Proof. We prove it assuming that k = 1 (the other cases are analogous). Notice that Ψ1 has norm less than 
or equal to one (since A is F -Arens stable).

Fix T ∈ A(E1, . . . , En; F ) and ε > 0 and let T̃ ∈ A(�∞(BE′
1
), E2, . . . , En; F ) be an extension of T with 

the same A-norm. Since E′
1 has the Radon–Nikodým property, by the Lewis–Stegall Theorem [22, 33.1], the 

adjoint of the canonical inclusion IE1 : E1 → �∞(BE′
1
) factors through �1(BE′

1
) via

�∞(BE′
1
)′

I′
E1

S

E′
1

�1(BE′
1
)

QE′
1

with ‖S‖ ≤ (1 + ε). Let B : c0(BE′
1
) × E2 × . . . × En → F be given by the formula B(a, x2, . . . , xn) =

Ext1(T̃ )(S′Jc0(BE′
1
)(a), x2, . . . , xn). Note that B is well defined. Using the ideal property and the fact that 

A is F -Arens stable we have that B ∈ A(c0(BE′
1
), E2, . . . , En; F ) and ‖B‖A ≤ ‖T‖A(1 + ε).

If we show that Ψ1(B) = T we are done. It is an easy exercise to prove the equality IE1(x)(a) = QE′
1
(a)(x)

for x ∈ E1 and a ∈ �1(BE′
1
). Now notice that

←−−−−−−−−
(JF ◦B)

(
·, x2, . . . , xn, y

′) = S
[
b 	→ y′

(
T̃ (b, x2, . . . , xn)

)]
,

where [b 	→ y′(T̃ (b, x2, . . . , xn))] is a functional defined on �∞(BE′
1
). Indeed, given a ∈ c0(BE′

1
),

S
[
b 	→ y′

(
T̃ (b, x2, . . . , xn)

)]
(a) = Jc0(BE′

1
)(a)

(
S
[
b 	→ y′

(
T̃ (b, x2, . . . , xn)

)])
= S′Jc0(BE′

1
)(a)

[
b 	→ y′

(
T̃ (b, x2, . . . , xn)

)]
=

[
Ext1(T̃ )

(
S′Jc0(BE′

1
)(a), x2, . . . , xn

)](
y′
)

= y′
(
B(a, x2, . . . , xn)

)
=

←−−−−−−−−
(JF ◦B)

(
·, x2, . . . , xn, y

′)(a).
Finally, let y′ ∈ F ′, then
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y′
(
Ψ1(B)(x1, . . . , xn)

)
= y′

(
Ext1(B)

(
IE1(x1), x2, . . . , xn

))
= Ext1(B)

(
IE1(x1), x2, . . . , xn

)(
y′
)

=
(
IE1(x1)

)[←−−−−−−−−
(JF ◦B)

(
·, x2, . . . , xn, y

′)]
= QE′

1

(←−−−−−−−−
(JF ◦B)

(
·, x2, . . . , xn, y

′))(x1)

=
(
QE′

1
S
[
b 	→ y′

(
T̃ (b, x2, . . . , xn)

)])
(x1)

=
(
I ′E1

[
b 	→ y′

(
T̃ (b, x2, . . . , xn)

)])
(x1)

= y′
(
T̃ (IE1x1, x2, . . . , xn)

)
= y′

(
T (x1, . . . , xn)

)
,

which ends the proof. �
We are now ready to prove our main result, Theorem 2.4.

Proof of Theorem 2.4. It is not difficult to see that an ideal of multilinear operators A is extendible if and 
only if its associated tensor norm α is projective in the first n coordinates (as can be seen in [30, Chapter 3]). 
In other words, if q1 : X1

1� Y1, . . ., qn : Xn
1� Yn are quotient mappings then the mapping

q1 ⊗ . . . qn ⊗ idZ : (X1 ⊗̃ . . . ⊗̃Xn ⊗̃ Z,α)
1� (Y1 ⊗̃ . . . ⊗̃ Yn ⊗̃ Z,α)

is also a quotient. Therefore the down arrows on the left side of Fig. 1 are all quotient mappings.
On the other hand, since E1, . . . , En are Asplund spaces (and, obviously, also the spaces c0(BE′

1
), . . . ,

c0(BE′
n
)) and A is F -Arens stable we have, by Proposition 2.6, that the down arrows on the right side are 

quotient mappings too.

(
⊗̃n

i=1�1(BE′
i
) ⊗̃ F, α)

�0

⊗n−1
i=1 Id�1(B

E′
i
)⊗QE′

n
⊗IdF

A(c0(BE′
1
), . . . , c0(BE′

n
);F )

Ψn

((
⊗̃n−1

i=1 �1(BE′
i
)) ⊗̃ E′

n ⊗̃ F, α)
�1

(
⊗n−2

i=1 Id�1(B
E′

i
))⊗QE′

n−1
⊗IdE′

n
⊗IdF

A(c0(BE′
1
), . . . , c0(BE′

n−1
), En;F )

Ψn−1

((
⊗̃n−2

i=1 �1(BE′
i
)) ⊗̃ E′

n−1 ⊗̃ E′
n ⊗̃ F, α)

�2
A(c0(BE′

1
), . . . , c0(BE′

n−2
), En−1, En;F )

... . . .
...

. . .

(�1(BE′
1
) ⊗̃ (

⊗̃n

i=2E
′
i) ⊗̃ F, α)

�n−1

QE′
1
⊗(

⊗n
i=2IdE′

i
)⊗IdF

A(c0(BE′
1
), E2, . . . , En;F )

Ψ1

(
⊗̃n

i=1E
′
i ⊗̃ F, α)

�n

A(E1, . . . , En;F )

Fig. 1. Commutative diagram used in the proof of Theorem 2.4.



D. Galicer, R. Villafañe / J. Math. Anal. Appl. 421 (2015) 1743–1766 1753
Now, since A has the F -RNp, this implies that �0 is a quotient mapping and this yields that �1 is a 
quotient mapping as well (by Remark 2.5 the diagram is commutative). Proceeding inductively in each 
square we obtain that �n is a quotient mapping and this concludes the proof. �

Our result, Theorem 2.4, generalizes Lewis’ theorem [22, Theorem 33.3] and also the result given in [17, 
Theorem 3.5.] for scalar multilinear operators. To see the first assertion, suppose that α is a tensor norm of 
order 2 with the Radon–Nikodým property (in the sense of [22, 33.2]) associated to the maximal operator 
ideal A, and let F be an Asplund Banach space. We must show that Theorem 2.4 gives the quotient mapping

E′ ⊗̃α/ F
′ � (E ⊗(α/)′ F )′.

Recall that the transposed tensor norm (α/)t = \(αt) is associated to the operator ideal \(Adual), as can 
be seen in [22, 17.8 and 20.12].

Now, since α has the Radon–Nikodým property the same holds for α/ [22, Proposition 33.2]. By 
Lemma 33.3 in [22] we have the quotient mapping

E′ ⊗̃α/ �1(J) �
(
E ⊗(α/)′ c0(J)

)′
,

for any index set J . In other words,

�1(J) ⊗̃(α/)t E
′ = �1(J) ⊗̃\(αt) E

′ �
(
c0(J) ⊗(\(αt))′ E

)′ = \
(
Adual)(c0(J);E′).

This implies that the ideal \(Adual) has the vector-RNp in the sense of Definition 2.1. Note that the ideal 
\(Adual) is E′-Arens stable (E′ is a dual space) and is extendible in the first variable. The latter means 
that any S ∈ \(Adual)(X; Y ) can be extended to an operator in \(Adual)(Z; Y ) with the same ideal norm, 
for every superspace Z ⊃ X. Therefore by Theorem 2.4 we obtain the quotient mapping

F ⊗̃\(αt) E
′ � \

(
Adual)(F ;E′),

for every Asplund space F . If we transposed this relation we get

E′ ⊗̃α/ F
′ � A/

(
E;F ′) = (E ⊗(α/)′ F )′,

for every Asplund space F . This is exactly the result that appears in [22, Theorem 33.3].
To deduce [16, Theorem 3.5] from Theorem 2.4, the reasoning is quite similar. Moreover, we do not have 

to change the order of the spaces involved (as we did before).
In many cases, for an arbitrary space F , the ideal A is F ′-Arens stable but not F -Arens stable (for 

example for E and GI, see Section 3 for definitions). In this situation, Theorem 2.4 gives us a coincidence 
result only in the cases where the target space is a dual. One of the assumptions of the next theorem asks 
for A to be F ′′-Arens stable (a much weaker condition). As we are interested in searching for monomial 
basis on spaces of multilinear operators, it is natural to deal with spaces which have shrinking Schauder 
bases.

Theorem 2.7. Let A be an F ′′-Arens stable extendible ideal with the F ′′-RNp. If E1, . . . , En have shrinking 
bases and F ′′ has the bounded approximation property, then

(
E′

1 ⊗̃ . . . ⊗̃E′
n ⊗̃ F, α

) 1= Amin(E1, . . . , En;F ) 1= A(E1, . . . , En;F ).
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This theorem will be used in the next section for a result on Schauder bases for the ideal E . We need 
first some lemmas in order to give a proof of this theorem. The following asserts, under approximation 
properties, that finite type multilinear operators have the same Amin-norm when the range space is F or 
its bidual F ′′.

Lemma 2.8. Let A ∼ α be an ideal of multilinear operators and let E′
1, . . . , E

′
n, F

′′ be Banach spaces with 
the bounded approximation property. If T ∈ A(E1, . . . , En; F ) is a finite type multilinear operator, then 
‖JF ◦ T‖Amin(E1,...,En;F ′′) = ‖T‖Amin(E1,...,En;F ).

Proof. Using the Embedding Lemma [22, 13.3] and the fact that E′
1, . . . , E

′
n, F

′′ have the bounded approx-
imation property, we have the following commutative diagram

(
⊗̃n

i=1E
′
i ⊗̃ F ′′, α) Amin(E1, . . . , En;F ′′),

(
⊗̃n

i=1E
′
i ⊗̃ F, α)

1

Amin(E1, . . . , En;F )

the proof easily follows from this. �
Given an operator in Amin(E1, . . . , En; F ), Lemma 2.9 below, shows an explicit sequence of finite type 

multilinear operators that approximate it.

Lemma 2.9. Let E1, . . . , En be Banach spaces with shrinking bases and F be a Banach space. Let 
Pk := (P 1

k , . . . , P
n
k ), where P j

k is the projection on the first k coordinates of the basis of Ej. If T ∈
Amin(E1, . . . , En; F ), then T ◦ Pk −→ T in the Amin-norm.

Proof. First observe that Amin(E1, . . . , En; F ) is the closure of the finite type multilinear operators in 
Amin-norm (see [28, Lemma 3.3] for a similar result in the polynomial context). Fix ε > 0, and let R ∈
A(E1, . . . , En; F ) be a finite type multilinear operator such that ‖T −R‖Amin(E1,...,En;F ) < ε, then ‖R ◦Pk−
T ◦ Pk‖Amin ≤ ‖P 1

k ‖ · · · ‖Pn
k ‖ ε < Cε. If R =

∑r
j=1 ϕ

1
j (·) · · ·ϕn

j (·)fj , then

∥∥R−R ◦ Pk

∥∥
Amin =

∥∥∥∥∥
r∑

j=1

(
ϕ1
j (·) · · ·ϕn

j (·) −
(
ϕ1
j ◦ P 1

k

)
(·) · · ·

(
ϕn
j ◦ Pn

k

)
(·)

)
fj

∥∥∥∥∥
Amin

≤
r∑

j=1

∥∥(ϕ1
j (·) · · ·ϕn

j (·) −
(
ϕ1
j ◦ P 1

k

)
(·) · · ·

(
ϕn
j ◦ Pn

k

)
(·)

)
fj
∥∥
Amin

≤
r∑

j=1

(∥∥(ϕ1
j (·) · · ·ϕn

j (·) −
(
ϕ1
j ◦ P 1

k

)
(·)ϕ2

j (·) · · ·ϕn
j (·)

)
fj
∥∥
Amin + · · ·

+
∥∥((ϕ1

j ◦ P 1
k

)
(·) · · ·

(
ϕn−1
j ◦ Pn−1

k

)
(·)ϕn

j (·) −
(
ϕ1
j ◦ P 1

k

)
(·) · · ·

(
ϕn
j ◦ Pn

k

)
(·)

)
fj
∥∥
Amin

)
≤

r∑
j=1

D
(∥∥ϕ1

j (·) −
(
ϕ1
j ◦ P 1

k

)
(·)

∥∥
E′

1
+ · · · +

∥∥ϕn
j (·) −

(
ϕn
j ◦ Pn

k

)
(·)

∥∥
E′

n

)
· ‖fj‖F ,

which is less than ε for k sufficiently large.
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Therefore,

‖T − T ◦ Pk‖Amin ≤ ‖T −R‖Amin + ‖R−R ◦ Pk‖Amin + ‖R ◦ Pk − T ◦ Pk‖Amin < Kε

for k big enough. �
Now we are ready to prove the theorem.

Proof of Theorem 2.7. Let T ∈ A(E1, . . . , En; F ). By Theorem 2.4 we have that JF ◦T ∈ Amin(E1, . . . , En;
F ′′) (spaces with shrinking bases are Asplund spaces) and ‖JF ◦ T‖Amin = ‖JF ◦ T‖A. By Lemma 2.9, 
JF ◦ T ◦Pk → JF ◦ T in the Amin-norm, thus (JF ◦ T ◦Pk)k is a Cauchy sequence in Amin(E1, . . . , En; F ′′). 
By Lemma 2.8, ‖JF ◦ T ◦ Pk‖Amin = ‖T ◦ Pk‖Amin . Moreover, T ◦ Pk is also a Cauchy sequence in 
Amin(E1, . . . , En; F ) which obviously converges to T ∈ Amin(E1, . . . , En; F ). Then,

‖T‖A ≤ ‖T‖Amin = ‖JF ◦ T‖Amin = ‖JF ◦ T‖A ≤ ‖T‖A.

This completes the proof. �
Let E1, . . . , En be Banach spaces with Schauder basis (ej1)j1 , . . . , (ej1)jn respectively and let β be tensor 

norm of order n. There is a natural ordering, usually called the generalized square ordering of Gelbaum–Gil 
de Lamadrid (or simply square ordering) in Nn such that the monomials (ej1⊗. . .⊗ejn)(j1,...,jn)∈Nn (with this 
ordering) form a Schauder basis of the tensor (E1 ⊗̃ . . . ⊗̃En, β) (see for example [24,34] for an appropriate 
treatment of this ordering). This follows by mimicking the ideas of [31] (see also [22, Exercise 12.9]) for tensor 
products of order two. In [20, Theorem 8] this result is generalized for atomic decompositions. Using our 
previous results we can provide conditions to ensure the existence of monomial bases on ideals of multilinear 
operators.

Theorem 2.10. Let A ∼ α be an extendible ideal of multilinear operators.

(1) If A is F -Arens stable, has the F -RNp and E′
1, . . . , E

′
n, F have Schauder bases (e′j1)j1 , . . . , (e

′
jn

)jn , (fl)l
respectively, then the monomials

(
e′j1(·) · · · e

′
jn(·) · fl

)
j1,...,jn,l

with the square ordering form a Schauder basis of A(E1, . . . , En; F ).
(2) If A is F ′′-Arens stable and has the F ′′-RNp, F ′′ has the bounded approximation property, E1, . . . , En

have shrinking Schauder bases (ej1)j1 , . . . , (ejn)jn respectively and F has basis (fl)l, then the monomials 
(associated to the coordinate functionals)

(
e′j1(·) · · · e

′
jn(·) · fl

)
j1,...,jn,l

with the square ordering form a Schauder basis of A(E1, . . . , En; F ).

Proof. Item (1) is a straightforward application of Theorem 2.4 and the fact that the monomials with the 
square ordering form a basis of the tensor product (E′

1 ⊗̃ . . . ⊗̃E′
n ⊗̃F, α). Recall that the quotient mapping 

given in Eq. (3) in Theorem 2.4 is actually an isometric isomorphism in this case since all the spaces involved 
have the bounded approximation property.

Item (2) follows identically using Theorem 2.7. �
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We now relate structural properties of A(E1, . . . , En, F ′) with properties of E1, . . . , En, F and their tensor 
product. Namely, separability, the Radon–Nikodým and Asplund properties.

The following proposition is straightforward.

Proposition 2.11. Let A ∼ α be an F -Arens stable extendible ideal with the F -RNp and let E1, . . . , En, F be 
Banach spaces such that E′

i and F are separable spaces, for all 1 ≤ i ≤ n. Then the space A(E1, . . . , En; F )
is separable.

Recall that a Banach space E has the Radon–Nikodým property if, for every finite measure μ, every 
operator T : L1(μ) → E is representable, i.e., there exists a bounded μ-measurable function g : Ω → E with

Tf =
∫

fgdμ for all f ∈ L1(μ).

A Banach space E is Asplund if its dual E′ has the Radon–Nikodým property. The following theorem is a 
transfer type result. It shows that, under certain conditions, the Asplund property of the spaces involved 
can be transferred to the tensor product. A result of this nature can be found in [40] for the injective tensor 
product.

Theorem 2.12. Let A ∼ α be an extendible maximal ideal with the F ′-RNp for every separable dual space F ′

and E1, . . . , En be Banach spaces. The following are equivalent:

(1) The spaces E1, . . . , En, F are Asplund.
(2) The space (E1 ⊗̃ . . . ⊗̃En ⊗̃ F, α′) is Asplund.
(3) The space A(E1, . . . , En, F ′) has the Radon–Nikodým property.

We give first some elementary lemmas of the theory of tensor products and tensor norms. The first one 
states that if an element z of the tensor product (

⊗̃n

j=1Ej , α) can be approximated by finite type tensors 
(i.e., elements of the algebraic tensor product 

⊗n
j=1 Ej) then z belongs to the tensor product of some 

separable subspaces of Ej .

Lemma 2.13. Let α be a finitely generated tensor norm and let z ∈ (
⊗̃n

j=1Ej , α). Consider a sequence of 
finite type tensors (wr)r such that wr → z in (

⊗̃n

j=1Ej , α). Then there exist separable subspaces Wj ⊂ Ej

(1 ≤ j ≤ n) such that:

(1) z ∈ (
⊗̃n

j=1Wj , α).
(2) α(wr; 

⊗̃n

j=1Wj) = α(wr; 
⊗̃n

j=1Ej), for all r ∈ N.
(3) α(wr − wl; 

⊗̃n

j=1Wj) = α(wr − wl; 
⊗̃n

j=1Ej), for all r, l ∈ N.

Proof. Since α is a finitely generated tensor norm, given k, r ∈ N, there exists Ak,r
j ∈ FIN (Ej) such that 

wr ∈
⊗̃n

j=1A
k,r
j and α(wr; 

⊗̃n

j=1A
k,r
j ) ≤ α(wr; 

⊗̃n

j=1Ej) + 1/k.
In the same way, given k, r, l ∈ N, there exists Bk,r,l

j ∈ FIN (Ej) such that wr − wl ∈
⊗̃n

j=1B
k,r,l
j and 

α(wr − wl; 
⊗̃n

j=1B
k,r,l
j ) ≤ α(wr − wl; 

⊗̃n

j=1Ej) + 1/k.
Then for 1 ≤ j ≤ n, we take

Wj := span
[
Ak,r

j , Bk,r,l
j : k, r, l ∈ N

]
,

which are separable since Ak,r
j , Bk,r,l

j ∈ FIN (Ej). Then,
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α
(
wr;

⊗̃n

j=1
Wj

)
≤ α

(
wr;

⊗̃n

j=1
Ak,r

j

)
≤ α

(
wr;

⊗̃n

j=1
Ej

)
+ 1/k ≤ α

(
wr;

⊗̃n

j=1
Wj

)
+ 1/k

for all k ∈ N. Thus α(wr; 
⊗̃n

j=1Wj) = α(wr; 
⊗̃n

j=1Ej).
Analogously, passing through Bk,r,l

j , we have α(wr − wl; 
⊗̃n

j=1Wj) = α(wr − wl; 
⊗̃n

j=1Ej).
Now, since wr → z, (wr)r is a Cauchy sequence in (

⊗̃n

j=1Ej , α). Then (wr)r is Cauchy in (
⊗̃n

j=1Wj , α), 
therefore there exists w ∈ (

⊗̃n

j=1Wj , α) such that wr → w. We affirm that w = z. Indeed,

α
(
z − w;

⊗̃n

j=1
Ej

)
≤ α

(
z − wr;

⊗̃n

j=1
Ej

)
+ α

(
wr − w;

⊗̃n

j=1
Ej

)
≤ α

(
z − wr;

⊗̃n

j=1
Ej

)
+ α

(
wr − w;

⊗̃n

j=1
Wj

)
→ 0,

which concludes the proof. �
The next result asserts that a separable subspace of the tensor product (

⊗̃n

j=1Ej , α) can be isometrically 
embedded in the tensor product of separable subspaces of Ej. This was used, for example in [17, Theo-
rem 2.9], however everything was much easier there since the tensor norm considered was injective (i.e., it 
respects subspaces isometrically).

Lemma 2.14. Let α be a finitely generated tensor norm and let S ⊆ (
⊗̃n

j=1Ej , α) be a separable subspace. 

Then exist separable subspaces Wj ⊆ Ej such that S 1
↪→ (

⊗̃n

j=1Wj , α).

Proof. Let {zk}k ⊆ S be a dense subset. For each k ∈ N, consider a sequence of finite type tensors (wk
r )r

such that wk
r → zk in (

⊗̃n

j=1Ej , α). Then, by the previous lemma, there exist separable subspaces W k
j ⊆ Ej

such that zk, wk
r ∈ (

⊗̃n

j=1W
k
j , α) for every k and r. Moreover, we have α(zk; 

⊗̃n

j=1W
k
j ) = α(zk; 

⊗̃n

j=1Ej), 
α(wk

r ; 
⊗̃n

j=1W
k
j ) = α(wk

r ; 
⊗̃n

j=1Ej) and α(wk
r − wk

l ; 
⊗̃n

j=1W
k
j ) = α(wk

r − wk
l ; 
⊗̃n

j=1Ej), for every k, r, l.
Take Wj := span[W k

j : k ∈ N] which is also separable. Furthermore, zk ∈ (
⊗̃n

j=1Wj , α) for all k ∈ N. Let 

us see S
1
↪→ (

⊗̃n

j=1Wj , α). Fix v ∈ S; without loss of generality we can suppose that α(v−zk; 
⊗̃n

j=1Ej) → 0, 
as k → ∞. Let us see that {zk}k is a Cauchy sequence in (

⊗̃n

j=1Wj , α). Indeed, for every r we have

♠ α
(
zk − zl;

⊗̃n

j=1
Wj

)
≤ α

(
zk − wk

r ;
⊗̃n

j=1
Wj

)
+ α

(
wk

r − wl
r;
⊗̃n

j=1
Wj

)
+ α

(
wl

r − zl;
⊗̃n

j=1
Wj

)
= α

(
zk − wk

r ;
⊗̃n

j=1
Wj

)
+ α

(
wk

r − wl
r;
⊗̃n

j=1
Ej

)
+ α

(
wl

r − zl;
⊗̃n

j=1
Wj

)
.

Using the triangle inequality note that the second term α(wk
r − wl

r; 
⊗̃n

j=1Ej) of the last inequality can be 

bounded by α(wk
r −zk; 

⊗̃n

j=1Ej) +α(zk−zl; 
⊗̃n

j=1Ej) +α(zl−wl
r; 
⊗̃n

j=1Ej). Therefore α(zk−zl; 
⊗̃n

j=1Wj)
in ♠ goes to zero if k, l are arbitrarily large (all the inequalities hold for every r). Since 

⊗̃n

j=1Wj is complete 
zk converge (and reasoning as we did in the proof of the previous lemma) zk must converge to v. Now,

α
(
v;
⊗̃n

j=1
Ej

)
≤ α

(
v;
⊗̃n

j=1
Wj

)
≤ α

(
v − zk;

⊗̃n

j=1
Wj

)
+ α

(
zk;

⊗̃n

j=1
Wj

)
= α

(
v − zk;

⊗̃n

j=1
Wj

)
+ α

(
zk;

⊗̃n

j=1
Ej

)
.

Since the first term is arbitrarily small as k goes to infinity and the second one converges to α(v; 
⊗̃n

j=1Ej) we 

obtain that α(v; 
⊗̃n

Wj) = α(v; 
⊗̃n

Ej). Therefore, S 1
↪→ (

⊗̃n
Wj , α) and this concludes the proof. �
j=1 j=1 j=1
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Finally we demonstrate Theorem 2.12.

Proof of Theorem 2.12. Let us prove (1) ⇒ (2), i.e., if E1, . . . , En, F are Asplund spaces, then (E1 ⊗̃ . . . ⊗̃
En ⊗̃ F, α′) is Asplund.

Take S ⊆ (E1 ⊗̃ . . .⊗̃En ⊗̃F, α′) a separable subspace. Let us see that S′ is separable too. By the previous 
lemma, there are separable subspaces Wj ⊆ Ej for 1 ≤ j ≤ n and Wn+1 ⊆ F such that S 1

↪→ (
⊗̃n+1

j=1Wj , α′). 
Now, since Ej and F are Asplund, the subspace W ′

j is separable for each j and applying Proposition 2.11, 
we know that A(W1, . . . , Wn; W ′

n+1) is separable. The representation theorem for maximal ideals (see [29, 
Theorem 4.5]) tell us that A(W1, . . . , Wn; W ′

n+1) 
1= (

⊗̃n+1
j=1Wj ; α′)′, which implies that (

⊗̃n+1
j=1Wj , α′)′ is 

separable and S′ is separable too since (
⊗̃n+1

j=1Wj , α′)′
1� S′.

The other implications follow easily using the representation theorem for maximal ideals and the fact 
that a Banach space is Asplund if and only if its dual has the Radon–Nikodým property. �
3. Applications and examples

In this section we apply the previous results to some classical multilinear ideals. We start with the ideal of 
extendible multilinear operators E . Recall that a multilinear operator T : E1 × . . .×En → F is extendible if 
for any Banach space Gj containing Ej there exists T̃ ∈ L(G1, . . . , Gn; F ) an extension of T . The space of all 
such multilinear operators is denoted by E(E1, . . . , En; F ) and it is endowed with the norm ‖T‖E(E1,...,En;F )
defined by

‖T‖E := inf{c > 0: for all Gj ⊃ Ej there is an extension of T to G1 × . . .×Gn

with norm ≤ c}.

In order to use our previous results, we need a proposition first.

Proposition 3.1. The ideal E is extendible and F ′-Arens stable for every dual space F ′. In addition, if G is 
a Banach space which contains no copy of c0, then E has the G-RNp.

Proof. By definition, it is trivial to see that this ideal is extendible. It is also well known that E is F ′-Arens 
stable (this can be obtained following the proof of [13, Theorem 3.6] and the fact that every dual space is 
complemented in its bidual).

Since c0 is an L∞-space, we have E(nc0; G) = L(nc0; G) and Emin(nc0; G) = Lapp(nc0; G), the result now 
follows from Proposition 2.2 and Proposition 2.3. �

If we call αext the tensor norm associated to E , we obtain the next corollary.

Corollary 3.2.

(1) If E1, . . . , En are Asplund spaces and F ′ is a dual space which contains no copy of c0, then(
E′

1 ⊗̃ . . . ⊗̃E′
n⊗̃F ′, αext

) 1� E
(
E1, . . . , En;F ′).

In particular, Emin(E1, . . . , En; F ′) 1= E(E1, . . . , En; F ′).
(2) If F ′ is a dual space which contains no copy of c0 and E′

1, . . . , E
′
n, F

′ have bases (e′j1)j1 , . . . , (e
′
jn

)jn , (f ′
l )l

respectively, then the monomials (
e′j1(·) · · · e

′
jn(·) · f ′

l

)
j1,...,jn,l

with the square ordering form a Schauder basis of E(E1, . . . , En; F ′).
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(3) If F ′ is a dual space which contains no copy of c0 and E1, . . . , En, F have shrinking Schauder bases 
(ej1)j1 , . . . , (ejn)jn , (fl)l respectively, then the monomials (associated to the coordinate functionals)(

e′j1(·) · · · e
′
jn(·) · f ′

l

)
j1,...,jn,l

with the square ordering form a boundedly complete Schauder basis of the space E(E1, . . . , En; F ′).

Proof. Item (1) can be deduced using Proposition 3.1 and Theorem 2.4. Item (2) follows from the first part 
of Theorem 2.10. To prove item (3) first note that since the range space is a dual space, by the representation 
theorem of maximal ideals [29, Theorem 4.5], we have

E
(
E1, . . . , En;F ′) 1= Emax(E1, . . . , En;F ′) 1=

(
E1 ⊗̃ . . . ⊗̃En ⊗̃ F, α′

ext
)′
.

Now, since the spaces have shrinking bases, then E′
1, . . . , E

′
n and F ′ have the bounded approximation 

property and by the representation theorem of minimal ideals 1.1, using the first part of this corollary, we 
have that

E
(
E1, . . . , En;F ′) 1= Emin(E1, . . . , En;F ′) 1=

(
E′

1 ⊗̃ . . . ⊗̃E′
n ⊗̃ F ′, αext

)
.

In conclusion, we get (E1 ⊗̃ . . . ⊗̃ En ⊗̃ F, α′
ext)′

1= (E′
1 ⊗̃ . . . ⊗̃ E′

n ⊗̃ F ′, αext). Notice that the basis (e′j1 ⊗
. . .⊗ e′jn ⊗ f ′

l )j1,...,jn,l of (E1 ⊗̃ . . . ⊗̃En ⊗̃F, α′
ext)′ is formed by the coordinate functionals associated to the 

basis (ej1 ⊗ . . .⊗ ejn ⊗ fl)j1,...,jn,l of (E1 ⊗̃ . . . ⊗̃En ⊗̃ F, α′
ext), therefore the result follows. �

Using Theorem 2.7 and reasoning in a similar manner, we get:

Corollary 3.3. If E1, . . . , En have shrinking bases, F ′′ has the bounded approximation property and contains 
no copy of c0, then(

E′
1 ⊗̃ . . . ⊗̃ E′

n ⊗̃ F, αext
) 1= Emin(E1, . . . , En;F ) 1= E(E1, . . . , En;F ).

In particular, if F has also a basis then the monomials form a basis of E(E1, . . . , En; F ).

A natural and important question about an ideal is if it preserves some Banach space property. The next 
two results shed some light in this direction. The first one is a consequence of Proposition 2.11.

Corollary 3.4. Let E1, . . . , En, F be Banach spaces with separable duals. Then the space E(E1, . . . , En; F ′)
is separable.

Bearing in mind that Emax(E1, . . . , En; F ′) = E(E1, . . . , En; F ′) (since the range space is a dual space), 
the following corollary can be obtained using Proposition 3.1 and Theorem 2.12.

Corollary 3.5. Let E1, . . . , En, F be Banach spaces. The following are equivalent:

(1) The spaces E1, . . . , En, F are Asplund.
(2) The space (E1 ⊗̃ . . . ⊗̃En ⊗̃ F, α′

ext) is Asplund.
(3) The space E(E1, . . . , En, F ′) has the Radon–Nikodým property.

Now we deal with the ideal of Pietsch-integral multilinear operators. Recall that a multilinear oper-
ator T ∈ L(E1, . . . , En; F ) is Pietsch integral (Grothendieck integral) if there exists a regular F -valued 
(F ′′-valued) Borel measure μ, of bounded variation on (BE′ × . . .×BE′ , w∗) such that
1 n
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T (x1, . . . , xn) =
∫

BE′
1
×...×BE′

n

(
x′

1(x1)
)
· · ·

(
x′
n(xn)

)
dμ

(
x′

1, . . . , x
′
n

)

for every xk ∈ Ek. The spaces of Pietsch integral and Grothendieck integral n-linear operators are denoted 
by PI(E1, . . . , En; F ) and GI(E1, . . . , En; F ) respectively and the integral norm of a multilinear operator 
T is defined as inf{‖μ‖}, where the infimum runs over all the measures μ representing T .

We now describe the minimal kernel of PI namely, the space of nuclear multilinear operators N . 
A multilinear operator T ∈ L(E1, . . . , En; F ) is nuclear if it can be written as T (x1, . . . , xn) =∑

j∈N
λj(xj

1)′(x1) · · · (xj
n)′(xn) · fj , where λj ∈ K, (xj

k)′ ∈ E′
k, fj ∈ F for all j and 

∑
j∈N

|λj | · ‖(xj
1)′‖ · · ·

‖(xj
n)′‖ · ‖fj‖ < ∞. The space of nuclear n-linear operators is denoted by N (E1, . . . , En; F ) and it is a 

Banach space under the norm

‖T‖N (E1,...,En;F ) = inf
{∑

j∈N

|λj | ·
∥∥(xj

1
)′∥∥ · · ·∥∥(xj

n

)′∥∥ · ‖fj‖
}
,

where the infimum is taken over all representations of T as above.
The isometry between the space of Pietsch integral and the space of nuclear multilinear forms on Asplund 

spaces can be found in [2]. This result and their consequences relied heavily on the theory of vector measures 
(e.g., [23]). We reprove this statement using a quite different perspective: we deal with a systematic scheme 
on tensor products instead.

The following proposition will allow us to be in the conditions of Theorem 2.4.

Proposition 3.6. The ideal PI is Arens stable, extendible and has the vector-RNp.

Proof. It is known that PI is an extendible Arens stable ideal (see for example [18, Theorem 2.12] and 
[19, Theorem 5] for an analogous result on the polynomial setting). Let us see that it has the vector-RNp. 
Using the representation theorem for minimal ideals 1.1 and Proposition 2.2 (Pietsch-integral operators are 

weakly sequentially continuous) it remains to see that PI(nc0; F ) 1= N (nc0; F ). Indeed, if T ∈ PI(nc0; F ), 
then T can be written as

T (x1, . . . , xn) =
∫

B�1×···×B�1

x′
1(x1) · · ·x′

n(xn) dΓ
(
x′

1, . . . , x
′
n

)
,

where Γ is a regular F -valued measure of bounded variation on (B�1 × · · · ×B�1 , w
∗).

Now, x′
k(·) =

∑∞
jk=1 x

′
k(ejk)e′jk(·), then using the Dominated Convergence Theorem applied to the scalar 

measure |Γ |, we have

T (x1, . . . , xn) =
∫

B�1×···×B�1

( ∞∑
j1=1

x′
1(ej1) · e′j1(x1)

)
· · ·

( ∞∑
jn=1

x′
1(ejn) · e′jn(xn)

)
dΓ

(
x′

1, . . . , x
′
n

)

=
∫

B�1×···×B�1

∑
j1...,jn

x′
1(ej1) · · ·x′

1(ejn) · e′j1(x1) · · · e′jn(xn) dΓ
(
x′

1, . . . , x
′
n

)

=
∑

j1,...,jn

( ∫
B�1×···×B�1

x′
1(ej1) · · ·x′

1(ejn) dΓ
(
x′

1, . . . , x
′
n

))
︸ ︷︷ ︸

· e′j1(x1) · · · e′jn(xn).
:=Aj1,...,jn
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Since,

∑
j1,...,jn

‖Aj1,...,jn‖ =
∑

j1,...,jn

∥∥∥∥ ∫
B�1×···×B�1

x′
1(ej1) · · ·x′

1(ejn) dΓ
(
x′

1, . . . , x
′
n

)∥∥∥∥
≤

∑
j1,...,jn

∫
B�1×···×B�1

∣∣x′
1(ej1)

∣∣ · · · ∣∣x′
1(ejn)

∣∣ d|Γ |
(
x′

1, . . . , x
′
n

)
=

∫
B�1×···×B�1

∥∥x′
1
∥∥ · · ·∥∥x′

n

∥∥ d|Γ |
(
x′

1, . . . , x
′
n

)
≤ ‖T‖PI ,

T belongs to N (nc0; F ) and ‖T‖N ≤ ‖T‖PI , thus N (nc0, F ) 1= PI(nc0; F ). �
Recall that π is the tensor norm associated to PI. We now recover the main result of [2] and other 

consequences.

Corollary 3.7. The following hold:

(1) If E1, . . . , En are Asplund spaces, then

(
E′

1 ⊗̃ . . . ⊗̃ E′
n ⊗̃ F, π

) 1� PI(E1, . . . , En;F ).

In particular, N (E1, . . . , En; F ) 1= (PI)min(E1, . . . , En; F ) 1= PI(E1, . . . , En; F ).
(2) If E′

1, . . . , E
′
n, F have bases (e′j1)j1 , . . . , (e

′
jn

)jn , (fl)l respectively, then the monomials(
e′j1(·) · · · e

′
jn(·) · fl

)
j1,...,jn,l

with the square ordering form a Schauder basis of PI(E1, . . . , En; F ).
(3) If E1, . . . , En, F have shrinking Schauder bases (ej1)j1 , . . . , (ejn)jn , (fl)l respectively, then the monomials 

(associated to the coordinate functionals)(
e′j1(·) · · · e

′
jn(·) · f ′

l

)
j1,...,jn,l

with the square ordering form a boundedly complete Schauder basis of the space PI(E1, . . . , En; F ′).

Proof. Item (1) follows from Proposition 3.6 and Theorem 2.4. Items (2) and (3) are obtained similarly to 
what was done in Corollary 3.2. �

Looking carefully the proof of Theorem 2.7 and using the fact that GI(E1, . . . , En; F ′′) 1= PI(E1, . . . , En;
F ′′) since the range is a dual space, similar manipulations show the following corollary.

Corollary 3.8. If E1, . . . , En have shrinking bases and F ′′ has the bounded approximation property, then(
E′

1 ⊗̃ . . . ⊗̃E′
n ⊗̃ F, π

) 1= N (E1, . . . , En;F ) 1= PI(E1, . . . , En;F ) 1= GI(E1, . . . , En;F ).

In particular, if F has also a basis then the monomials form a basis of GI(E1, . . . , En; F ).

Note that here we have a coincidence result for GI (which is bigger than PI). This result is somewhat 
stronger than those appearing in the literature for PI.

Also as in Corollaries 3.4 and 3.5 we can also deduce the following well-known consequences (see [40]).
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Corollary 3.9. Let E1, . . . , En, F be Banach spaces such that E′
i and F are separable spaces, for all 1 ≤ i ≤ n. 

Then the space PI(E1, . . . , En; F ) is separable.

Corollary 3.10. The spaces E1, . . . , En, F are Asplund spaces if and only if the tensor product (E1 ⊗̃ . . .

⊗̃En ⊗̃ F, ε) is Asplund.

4. Coincidence on ideals of polynomials

In this section we provide coincidence results in the context of vector-valued ideals of homogeneous 
polynomials. Most of the notions and definition in this context are quite similar as those given for multilinear 
ideals in Section 1. We omit some of the necessary background and refer the reader to [28, Section 7] (and 
also for the theory of their associated tensor norms). For a complementary reading we refer to [27,29].

We need a couple of definitions in order to state the analogous results in the context of vector-valued 
ideals of homogeneous polynomials.

Let Q be an ideal of vector-valued n-homogeneous polynomials (see definition in [28, Section 7.2] ) and γ
be a mixed tensor norm (i.e., it assigns to each pair (E, F ) a norm on (

⊗n,s
E) ⊗F satisfying the properties 

given in [28, Section 7.6], where 
⊗n,s

E stands for the symmetric tensor product of E). We say that Q and 
γ are associated (and we write this as Q ∼ γ) if

Q
(
nM ;N

) 1=
((⊗n,s

M ′
)
⊗N, γ

)
,

for every finite dimensional spaces M and N .
Let Q be an ideal of n-homogeneous polynomials, recall that the Aron Berner extension AB : P(nE; F ) →

P(nE′′; F ′′) is defined by

AB(p)(x) := EXT (p̌)(x, . . . , x),

where p̌ is the symmetric multilinear operator associated to p and EXT stands for the iterated extension 
to the bidual given by (Extn) ◦ . . . ◦ (Ext1).

We say that a homogeneous polynomial ideal Q is F -Aron Berner stable if the mapping AB : Q(nE; F ) →
Q(nE′′; F ) is well defined and results an isometry. Note that the condition above says that the range of 
the Aron Berner extension remains in F . If Q is F -Aron Berner stable for every F , we just say that Q is 
an Aron Berner stable ideal. We stress that the same terminology was used in [8], with a different meaning 
there. As in the multilinear case, every maximal ideal of n-homogeneous polynomials is F ′-Aron Berner 
stable for every dual space (it can be obtained adapting the proof of [16, Lemma 2.2]), although we will not 
use this fact.

Analogous to the multilinear definition, an ideal Q is extendible if for every Banach spaces E, F , every 
superspace G ⊃ E and every p ∈ Q(nE; F ) there exists an extension p̃ ∈ Q(nG; F ) of p with the same 
Q-norm. Some examples of extendible ideals are PPI and Pe (the definitions of these ideals are completely 
similar in this context, see for example [15, Examples 1.11, 1.12]).

We are now ready to prove the polynomial version of Theorem 2.4. Obviously we state first the polynomial 
version of the Radon–Nikodým property.

Definition 4.1. Let Q ∼ γ be an ideal of n-homogeneous polynomials and F be a Banach space. We say that 
Q has the F -Radon–Nikodým property (F -RNp) if(⊗̃n,s

�1(J) ⊗̃ F, γ
) 1� Q

(
nc0(J);F

)
,

for every index set J .
If Q has the F -RNp for all F , we say that Q has the vector-RNp.
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It should be mentioned that, as in the multilinear case, we have the analogous result of Proposition 2.2.
To translate what we know about multilinear operators to the polynomial context we need to make 

some observations first. Let A be an ideal of multilinear operators which is F -Arens stable and let us call 
Ψ : A(c0(BE′

1
), . . . , c0(BE′

n
); F ) → A(E1, . . . , En; F ) the composition of the downward mappings in the right 

side of Fig. 1. The following proposition describes the mapping Ψ more easily (this will be useful to prove 
the polynomial version of Theorem 2.4).

Proposition 4.2. Let A be an F -Arens stable ideal, then the mapping

Ψ : A
(
c0(BE′

1
), . . . , c0(BE′

n
);F

)
→ A(E1, . . . , En;F )

is given by

Ψ(T )(x1, . . . , xn) = EXT (T )
(
IE1(x1), . . . , IEn

(xn)
)
.

Proof. For convenience we prove the result for n = 2. Let y′ ∈ F ′ and xi ∈ Ei (i = 1, 2). Then,

y′
(
Ψ(T )(x1, x2)

)
= y′

[
Ext2

(
Ψ1(T )

)(
x1, IE2(x2)

)]
= IE2(x2)

(
z2 	→

(←−−−−−−−−−−−
JF ◦ Ψ1(T )

)(
x1, z2, y

′))
= IE2(x2)

(
z2 	→ y′

(
Ψ1(T )(x1, z2)

))
= IE2(x2)

(
z2 	→

[
IE1(x1)

(
z1 	→ (←−−−−−−JF ◦ T )

(
z1, z2, y

′))])
= IE2(x2)

(
z2 	→ Ext1(T )

(
IE1(x1), z2

)(
y′
))

= IE2(x2)
(
z2 	→

(←−−−−−−−−−−−−−
JF ◦ Ext1(T )

)(
IE1(x1), z2, y

′))
= y′

((
Ext2 ◦ Ext1(T )

)(
IE1(x1), IE2(x2)

))
,

which concludes the proof. �
Now, this proposition shows that the diagram

(
⊗̃n

i=1�1(BE′
i
) ⊗̃ F, α)

�0

⊗n
i=1QE′

i
⊗IdF

A(c0(BE′
1
), . . . , c0(BE′

n
);F )

Ψ

(
⊗̃n

i=1E
′
i ⊗̃ F, α)

�n

A(E1, . . . , En;F )

(4)

commutes and, by the proof of Proposition 2.6, we get that, for E1, . . . , En Asplund spaces, the mapping Ψ
is a metric surjection if A is an F -Arens stable extendible ideal.

Now we are ready to give a coincidence result in this frame.

Theorem 4.3. Let E be an Asplund space. If Q ∼ γ is an F -Aron Berner stable extendible ideal with the 
F -RNp then,

(⊗̃n,s

E ⊗̃ F, γ
) 1� Q

(
nE;F

)
.

In particular, Qmin(nE; F ) 1= Q(nE; F ).
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Proof. A moment of thought shows that, as in diagram (4), the following square commutes

(
⊗̃n,s

�1(BE′) ⊗̃ F, γ)
�0

⊗n,sQE′⊗IdF

Q(nc0(BE′);F )

Ψ

(
⊗̃n,s

E′ ⊗̃ F, γ)
�n Q(nE;F ),

where Ψ(p)(x) := AB(p)(IE(x)). The rest now follows mimicking the proofs of Proposition 2.6 and Theo-
rem 2.4. �

From the previous theorem we can deduce coincidence results for Pe and PPI . The proofs can be obtained 
by standard manipulations (copying what was done in the previous section).

Corollary 4.4. If E is an Asplund space and F ′ is a dual space which contains no copy of c0, then(⊗̃n,s

E′ ⊗̃ F ′, γext

) 1� Pe

(
nE;F ′),

where γext stands for the mixed tensor norm associated to Pe.
In particular, (Pe)min(nE; F ′) 1= Pe(nE; F ′).

The following corollary was proved by Carando and Dimant in [14], using completely different techniques 
(arguments with a more geometric flavor).

Corollary 4.5. If E is an Asplund space, then(⊗̃n,s

E′ ⊗̃ F, γint

) 1� PPI
(
nE;F

)
,

where γint stands for the mixed tensor norm associated to PPI.
In particular, PN (nE; F ) 1= (PPI)min(nE; F ) 1= PPI(nE; F ).

From this two corollaries we can also deduce the analogous results obtained for bases in Corollaries 3.2 and 
3.7 for the polynomial ideals Pe and PPI . An important comment is in order. To obtain the corresponding 
analogous, a result in the lines of [31] (or [34]) in the mixed tensor product ((

⊗̃n,s
E) ⊗̃F, γ) is needed. We 

have not found it in the literature, so we include some details here. Let E and F be Banach spaces with 
bases (ej)j and (fl)l respectively. We define a natural basis in ((

⊗̃n,s
E) ⊗̃ F, γ).

For α = (j1, . . . , jn) ∈ N
n an index of n-elements, we denote by esα := S(ej1 ⊗ . . . ⊗ ejn), where S :⊗n

E →
⊗n,s

E is the classical symmetrization operator (see, for example [34]). Let (α, l) ∈ N
n × N, we 

say that a tensor of the form

esα ⊗ fl ∈
((⊗̃n,s

E
)
⊗̃ F, γ

)
is a monomial given by the index (α, l). We mix the orderings defined in [31,34] to define an ordering 
for the monomials to be a basis. In other words, we consider the square ordering for the ordered index 
sets Nn (endowed with the ordering given by Grecu and Ryan) and N. More precisely, given two indexes 
(α, l), (β, k) ∈ N

n × N we say that (α, l) < (β, k) if α < β or, if α = β and l > k, where the ordering in Nn

is the one given in [34, Section 2]. To prove this it must be shown that the projections to the monomials 
with their respective ordering are uniformly bounded. The result follows by using carefully the techniques 
of the two articles mentioned previously and in [28, 7.6(b)].
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